The Anatomy and Physics of ZDR Columns: Investigating a Polarimetric Radar Signature with a Spectral Bin Microphysical Model

Matthew R. Kumjian Advanced Study Program, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Matthew R. Kumjian in
Current site
Google Scholar
PubMed
Close
,
Alexander P. Khain Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by Alexander P. Khain in
Current site
Google Scholar
PubMed
Close
,
Nir Benmoshe Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by Nir Benmoshe in
Current site
Google Scholar
PubMed
Close
,
Eyal Ilotoviz Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by Eyal Ilotoviz in
Current site
Google Scholar
PubMed
Close
,
Alexander V. Ryzhkov Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Alexander V. Ryzhkov in
Current site
Google Scholar
PubMed
Close
, and
Vaughan T. J. Phillips Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden

Search for other papers by Vaughan T. J. Phillips in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Polarimetric radar observations of deep convective storms frequently reveal columnar enhancements of differential reflectivity ZDR. Such “ZDR columns” can extend upward more than 3 km above the environmental 0°C level, indicative of supercooled liquid drops being lofted by the updraft. Previous observational and modeling studies of ZDR columns are reviewed. To address remaining questions, the Hebrew University Cloud Model, an advanced spectral bin microphysical model, is coupled with a polarimetric radar operator to simulate the formation and life cycle of ZDR columns in a deep convective continental storm. In doing so, the mechanisms by which ZDR columns are produced are clarified, including the formation of large raindrops in the updraft by recirculation of smaller raindrops formed aloft back into the updraft at low levels. The internal hydrometeor structure of ZDR columns is quantified, revealing the transition from supercooled liquid drops to freezing drops to hail with height in the ZDR column. The life cycle of ZDR columns from early formation, through growth to maturity, to demise is described, showing how hail falling out through the weakening or ascending updraft bubble dominates the reflectivity factor ZH, causing the death of the ZDR column and leaving behind its “ghost” of supercooled drops. In addition, the practical applications of ZDR columns and their evolution are explored. The height of the ZDR column is correlated with updraft strength, and the evolution of ZDR column height is correlated with increases in ZH and hail mass content at the ground after a lag of 10–15 min.

Current affiliation: Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Matthew Kumjian, Dept. of Meteorology, The Pennsylvania State University, 513 Walker Bldg., University Park, PA 16801. E-mail: kumjian@psu.edu

Abstract

Polarimetric radar observations of deep convective storms frequently reveal columnar enhancements of differential reflectivity ZDR. Such “ZDR columns” can extend upward more than 3 km above the environmental 0°C level, indicative of supercooled liquid drops being lofted by the updraft. Previous observational and modeling studies of ZDR columns are reviewed. To address remaining questions, the Hebrew University Cloud Model, an advanced spectral bin microphysical model, is coupled with a polarimetric radar operator to simulate the formation and life cycle of ZDR columns in a deep convective continental storm. In doing so, the mechanisms by which ZDR columns are produced are clarified, including the formation of large raindrops in the updraft by recirculation of smaller raindrops formed aloft back into the updraft at low levels. The internal hydrometeor structure of ZDR columns is quantified, revealing the transition from supercooled liquid drops to freezing drops to hail with height in the ZDR column. The life cycle of ZDR columns from early formation, through growth to maturity, to demise is described, showing how hail falling out through the weakening or ascending updraft bubble dominates the reflectivity factor ZH, causing the death of the ZDR column and leaving behind its “ghost” of supercooled drops. In addition, the practical applications of ZDR columns and their evolution are explored. The height of the ZDR column is correlated with updraft strength, and the evolution of ZDR column height is correlated with increases in ZH and hail mass content at the ground after a lag of 10–15 min.

Current affiliation: Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Matthew Kumjian, Dept. of Meteorology, The Pennsylvania State University, 513 Walker Bldg., University Park, PA 16801. E-mail: kumjian@psu.edu
Save
  • Balakrishnan, N., and D. S. Zrnić, 1990: Estimation of rain and hail rates in mixed-phase precipitation. J. Atmos. Sci., 47, 565583, doi:10.1175/1520-0469(1990)047<0565:EORAHR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benmoshe, N., M. Pinsky, A. Pokrovsky, and A. Khain, 2012: Turbulent effects on the microphysics and initiation of warm rain in deep convective clouds: 2-D simulations by a spectral mixed-phase microphysics cloud model. J. Geophys. Res., 117, D06220, doi:10.1029/2011JD016603.

    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1953: The formation of atmospheric ice crystals by the freezing of droplets. Quart. J. Roy. Meteor. Soc., 79, 510519, doi:10.1002/qj.49707934207.

    • Search Google Scholar
    • Export Citation
  • Bott, A., 1998: A flux method for the numerical solution of the stochastic collection equation. J. Atmos. Sci., 55, 22842293, doi:10.1175/1520-0469(1998)055<2284:AFMFTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., J. Vivekanandan, J. D. Tuttle, and C. J. Kessinger, 1995: A study of thunderstorm microphysics with multiparameter radar and aircraft observations. Mon. Wea. Rev., 123, 31293143, doi:10.1175/1520-0493(1995)123<3129:ASOTMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar. 1st ed. Cambridge University Press, 636 pp.

  • Bringi, V. N., D. A. Burrows, and S. M. Menon, 1991: Multiparameter radar and aircraft study of raindrop spectral evolution in warm-based clouds. J. Appl. Meteor., 30, 853880, doi:10.1175/1520-0450(1991)030<0853:MRAASO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., L. Liu, P. C. Kennedy, V. Chandrasekar, and S. A. Rutledge, 1996: Dual multiparameter radar observations of intense convective storms: The 24 June 1992 case study. Meteor. Atmos. Phys., 59, 331, doi:10.1007/BF01031999.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., K. Knupp, A. Detwiler, L. Liu, I. J. Caylor, and R. A. Black, 1997: Evolution of a Florida thunderstorm during the Convection and Precipitation/Electrification Experiment: The case of 9 August 1991. Mon. Wea. Rev., 125, 21312160, doi:10.1175/1520-0493(1997)125<2131:EOAFTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., W. D. Rust, T. J. Schuur, D. R. MacGorman, P. R. Krehbiel, and W. Rison, 2007: Electrical and polarimetric radar observations of a multicell storm in TELEX. Mon. Wea. Rev., 135, 25252544, doi:10.1175/MWR3421.1.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 2000: The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study. Mon. Wea. Rev., 128, 26872710, doi:10.1175/1520-0493(2000)128<2687:TRBPAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Caylor, I. J., and A. J. Illingworth, 1987: Radar observations and modelling of warm rain initiation. Quart. J. Roy. Meteor. Soc., 113, 11711191, doi:10.1002/qj.49711347806.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., W. A. Petersen, L. D. Carey, S. A. Rutledge, and M. A. F. da Silva Dias, 2002: Radar observations of the kinematic, microphysical, and precipitation characteristics of two MCSs in TRMM LBA. J. Geophys. Res., 107, 8077, doi:10.1029/2000JD000264.

    • Search Google Scholar
    • Export Citation
  • Conway, J. W., and D. S. Zrnić, 1993: A study of embryo production and hail growth using dual-Doppler and multiparameter radars. Mon. Wea. Rev., 121, 25112528, doi:10.1175/1520-0493(1993)121<2511:ASOEPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., E. R. Mansell, Y. Jung, L. J. Wicker, M. R. Kumjian, and M. Xue, 2014: Low-level ZDR signatures in supercell forward flanks: The role of size sorting and melting of hail. J. Atmos. Sci., 71, 276299, doi:10.1175/JAS-D-13-0118.1.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11 21711 222, doi:10.1073/pnas.0910818107.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Evaristo, R., G. Scialom, N. Viltard, and Y. Lemaître, 2010: Polarimetric signatures and hydrometeor classification of West African squall lines. Quart. J. Roy. Meteor. Soc., 136, 272288, doi:10.1002/qj.561.

    • Search Google Scholar
    • Export Citation
  • Freud, E., and D. Rosenfeld, 2012: Linear relation between convective cloud drop number concentration and depth for rain initiation. J. Geophys. Res., 117, D02207, doi:10.1029/2011JD016457.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., D. E. Buechler, P. D. Wright, and W. D. Rust, 1988: Lightning and precipitation history of a microburst-producing storm. Geophys. Res. Lett., 15, 11851188, doi:10.1029/GL015i011p01185.

    • Search Google Scholar
    • Export Citation
  • Hall, M. P. M., S. M. Cherry, J. W. F. Goddard, and G. R. Kennedy, 1980: Rain drop sizes and rainfall rate measured by dual-polarization radar. Nature, 285, 195198, doi:10.1038/285195a0.

    • Search Google Scholar
    • Export Citation
  • Hall, M. P. M., J. W. F. Goddard, and S. M. Cherry, 1984: Identification of hydrometeors and other targets by dual-polarization radar. Radio Sci., 19, 132140, doi:10.1029/RS019i001p00132.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628, doi:10.1038/249026a0.

    • Search Google Scholar
    • Export Citation
  • Herzegh, P. H., and A. R. Jameson, 1992: Observing precipitation through dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 73, 13651374, doi:10.1175/1520-0477(1992)073<1365:OPTDPR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Höller, H., M. Hagen, P. F. Meischner, V. N. Bringi, and J. C. Hubbert, 1994: Life cycle and precipitation formation in a hybrid-type hailstorm revealed by polarimetric and Doppler radar measurements. J. Atmos. Sci., 51, 25002522, doi:10.1175/1520-0469(1994)051<2500:LCAPFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., V. N. Bringi, L. D. Carey, and S. Bolen, 1998: CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado. J. Appl. Meteor., 37, 749775, doi:10.1175/1520-0450(1998)037<0749:CCPRMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., 1988: The formation of rain in convective clouds. Nature, 336, 754756, doi:10.1038/336754a0.

  • Illingworth, A. J., J. W. F. Goddard, and S. M. Cherry, 1987: Polarization radar studies of precipitation development in convective storms. Quart. J. Roy. Meteor. Soc., 113, 469489, doi:10.1002/qj.49711347604.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., M. J. Murphy, and E. P. Krider, 1996: Multiple-parameter radar observations of isolated Florida thunderstorms during the onset of electrification. J. Appl. Meteor., 35, 343354, doi:10.1175/1520-0450(1996)035<0343:MPROOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, and G. Zhang, 2010: Simulations of polarimetric radar signatures of a supercell storm using a two-moment bulk microphysics scheme. J. Appl. Meteor. Climatol., 49, 146163, doi:10.1175/2009JAMC2178.1.

    • Search Google Scholar
    • Export Citation
  • Kaltenboeck, R., and A. V. Ryzhkov, 2013: Comparison of polarimetric signatures of hail at S and C bands for different hail sizes. Atmos. Res., 123, 323336, doi:10.1016/j.atmosres.2012.05.013.

    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., S. A. Rutledge, W. A. Petersen, and V. N. Bringi, 2001: Polarimetric radar observations of hail formation. J. Appl. Meteor., 40, 13471366, doi:10.1175/1520-0450(2001)040<1347:PROOHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and I. L. Sednev, 1995: Simulation of hydrometeor size spectra evolution by water–water, ice–water and ice–ice interactions. Atmos. Res., 36, 107138, doi:10.1016/0169-8095(94)00030-H.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., M. Ovchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak, 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55, 159224, doi:10.1016/S0169-8095(00)00064-8.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., M. B. Pinsky, M. Shapiro, and A. Pokrovsky, 2001: Collision rate of small graupel and water drops. J. Atmos. Sci., 58, 25712595, doi:10.1175/1520-0469(2001)058<2571:CROSGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Effects of atmospheric aerosols on deep convective clouds as seen from simulations using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61, 29632982, doi:10.1175/JAS-3350.1.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., D. Rosenfeld, A. Pokrovsky, U. Blahak, and A. V. Ryzhkov, 2011: The role of CCN in precipitation and hail in a midlatitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D dynamic frame. Atmos. Res., 99, 129146, doi:10.1016/j.atmosres.2010.09.015.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., T. V. Prabha, N. Benmoshe, G. Pandithurai, and M. Ovchinnikov, 2013: The mechanism of first raindrops formation in deep convective clouds. J. Geophys. Res., 118, 91239140, doi:10.1002/jgrd.50641.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., 2006: Very early formation of big, liquid drops revealed by ZDR in continental cumulus. J. Atmos. Sci., 63, 19391953, doi:10.1175/JAS3721.1.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., J. Vivekanandan, and S. G. Lasher-Trapp, 2002: First radar echoes and the early ZDR history of Florida cumulus. J. Atmos. Sci., 59, 14541472, doi:10.1175/1520-0469(2002)059<1454:FREATE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., L. J. Miller, and W. D. Hall, 2004: Deep convection and “first echoes” within anvil precipitation. Mon. Wea. Rev., 132, 18771890, doi:10.1175/1520-0493(2004)132<1877:DCAFEW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013a: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, doi:10.15191/nwajom.2013.0119.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013b: Principles and applications of dual-polarization weather radar. Part II: Warm and cold season applications. J. Oper. Meteor., 1, 243264, doi:10.15191/nwajom.2013.0120.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013c: Principles and applications of dual-polarization weather radar. Part III: Artifacts. J. Oper. Meteor., 1, 265274, doi:10.15191/nwajom.2013.0121.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, doi:10.1175/2007JAMC1874.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. V. Ryzhkov, V. M. Melnikov, and T. J. Schuur, 2010: Rapid-scan super-resolution observations of a cyclic supercell with a dual-polarization WSR-88D. Mon. Wea. Rev., 138, 37623786, doi:10.1175/2010MWR3322.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. M. Ganson, and A. V. Ryzhkov, 2012: Freezing of raindrops in deep convective updrafts: A microphysical and polarimetric model. J. Atmos. Sci., 69, 34713490, doi:10.1175/JAS-D-12-067.1.

    • Search Google Scholar
    • Export Citation
  • Loney, M. L., D. S. Zrnić, J. M. Straka, and A. V. Ryzhkov, 2002: Enhanced polarimetric radar signatures above the melting level in a supercell storm. J. Appl. Meteor., 41, 11791194, doi:10.1175/1520-0450(2002)041<1179:EPRSAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and Coauthors, 2008: TELEX: The Thunderstorm Electrification and Lightning Experiment. Bull. Amer. Meteor. Soc., 89, 9971013, doi:10.1175/2007BAMS2352.1.

    • Search Google Scholar
    • Export Citation
  • May, P. T., A. R. Jameson, T. D. Keenan, and P. E. Johnston, 2001: A comparison between polarimetric radar and wind profiler observations of precipitation in tropical showers. J. Appl. Meteor., 40, 17021717, doi:10.1175/1520-0450(2001)040<1702:ACBPRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meischner, P. F., V. N. Bringi, D. Heimann, and H. Höller, 1991: A squall line in southern Germany: Kinematics and precipitation formation as deduced by advanced polarimetric and Doppler radar measurements. Mon. Wea. Rev., 119, 678701, doi:10.1175/1520-0493(1991)119<0678:ASLISG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., 2000: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt., 39, 10261031, doi:10.1364/AO.39.001026.

    • Search Google Scholar
    • Export Citation
  • Nelson, S. P., 1983: The influence of storm flow structure on hail growth. J. Atmos. Sci., 40, 19651983, doi:10.1175/1520-0469(1983)040<1965:TIOSFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Noppel, H., U. Blahak, A. Seifert, and K. D. Beheng, 2010: Simulations of a hailstorm and the impact of CCN using an advanced two-moment cloud microphysical scheme. Atmos. Res., 96, 286301, doi:10.1016/j.atmosres.2009.09.008.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., A. Pokrovsky, and A. P. Khain, 2007: The influence of time-dependent melting on the dynamics and precipitation production in maritime and continental storm clouds. J. Atmos. Sci., 64, 338359, doi:10.1175/JAS3832.1.

    • Search Google Scholar
    • Export Citation
  • Picca, J. C., and A. V. Ryzhkov, 2012: A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma City extreme hailstorm. Mon. Wea. Rev., 140, 13851403, doi:10.1175/MWR-D-11-00112.1.

    • Search Google Scholar
    • Export Citation
  • Picca, J. C., M. R. Kumjian, and A. V. Ryzhkov, 2010: ZDR columns as a predictive tool for hail growth and storm evolution. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 11.3. [Available online at https://ams.confex.com/ams/25SLS/techprogram/paper_175750.htm.]

  • Pinsky, M., A. P. Khain, and M. Shapiro, 2001: Collision efficiency of drops in a wide range of Reynolds numbers: Effects of pressure on spectrum evolution. J. Atmos. Sci., 58, 742764, doi:10.1175/1520-0469(2001)058<0742:CEODIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic, 954 pp.

  • Raghavan, R., and V. Chandrasekar, 1994: Multiparameter radar study of rainfall: Potential application to area-time integral studies. J. Appl. Meteor., 33, 16361645, doi:10.1175/1520-0450(1994)033<1636:MRSORP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rowe, A. K., S. A. Rutledge, and T. J. Lang, 2012: Investigation of microphysical processes occurring in organized convection during NAME. Mon. Wea. Rev., 140, 21682187, doi:10.1175/MWR-D-11-00124.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., V. B. Zhuravlyov, and N. A. Rybakova, 1994: Preliminary results of X-band polarization radar studies of clouds and precipitation. J. Atmos. Oceanic Technol., 11, 132139, doi:10.1175/1520-0426(1994)011<0132:PROXBP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnić, 2005a: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, doi:10.1175/BAMS-86-6-809.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, and D. S. Zrnić, 2005b: Polarimetric tornado detection. J. Appl. Meteor., 44, 557570, doi:10.1175/JAM2235.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. Pinsky, A. Pokrovsky, and A. Khain, 2011: Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Meteor. Climatol., 50, 873894, doi:10.1175/2010JAMC2363.1.

    • Search Google Scholar
    • Export Citation
  • Scharfenberg, K. A., and Coauthors, 2005: The Joint Polarization Experiment: Polarimetric radar in forecasting and warning decision making. Wea. Forecasting, 20, 775788, doi:10.1175/WAF881.1.

    • Search Google Scholar
    • Export Citation
  • Shupyatsky, A. B., L. A. Dinevitch, I. P. Kapitalchuk, and D. K. Shtivelman, 1990: Use of polarization measurements in Cb for the analysis of their stage of development (in Russian). Meteor. Hydrol., 12, 5766.

    • Search Google Scholar
    • Export Citation
  • Smith, P. L., D. J. Musil, A. G. Detwiler, and R. Ramachandran, 1999: Observations of mixed-phase precipitation within a CaPE thunderstorm. J. Appl. Meteor., 38, 145155, doi:10.1175/1520-0450(1999)038<0145:OOMPPW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., H. B. Bluestein, Y. Jung, S. J. Frasier, and V. Venkatesh, 2010: The structure and time evolution of polarimetric signatures in severe convective storms based on high-resolution numerical simulations and data from a mobile, dual-polarized, X-band Doppler radar. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., P8.8. [Available online at https://ams.confex.com/ams/pdfpapers/176247.pdf.]

  • Snyder, J. C., H. B. Bluestein, V. Venkatesh, and S. J. Frasier, 2013: Observations of polarimetric signatures in supercells by an X-band mobile Doppler radar. Mon. Wea. Rev., 141, 329, doi:10.1175/MWR-D-12-00068.1.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., D. S. Zrnić, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372, doi:10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., T. Endoh, G. Wakahama, and N. Fukuta, 1991: Vapor diffusional growth of free-falling snow crystals between −3 and −23°C. J. Meteor. Soc. Japan, 69, 1530.

    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., H. B. Bluestein, J. B. Houser, S. J. Frasier, and K. M. Hardwick, 2012: Mobile, X-band, polarimetric Doppler radar observations of the 4 May 2007 Greensburg, Kansas, tornadic supercell. Mon. Wea. Rev., 140, 21032125, doi:10.1175/MWR-D-11-00142.1.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., L. J. Miller, K. C. Wiens, and S. A. Rutledge, 2005: The 29 June 2000 supercell observed during STEPS. Part I: Kinematics and microphysics. J. Atmos. Sci., 62, 41274150, doi:10.1175/JAS3585.1.

    • Search Google Scholar
    • Export Citation
  • Tong, H., V. Chandrasekar, K. R. Knupp, and J. Stalker, 1998: Multiparameter radar observations of time evolution of convective storms: Evaluation of water budgets and latent heating rates. J. Atmos. Oceanic Technol., 15, 10971109, doi:10.1175/1520-0426(1998)015<1097:MROOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tuttle, J. D., V. N. Bringi, H. D. Orville, and F. J. Kopp, 1989: Multiparameter radar study of a microburst: Comparison with model results. J. Atmos. Sci., 46, 601620, doi:10.1175/1520-0469(1989)046<0601:MRSOAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vali, G., 1994: Freezing rate due to heterogeneous nucleation. J. Atmos. Sci., 51, 18431856, doi:10.1175/1520-0469(1994)051<1843:FRDTHN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., J. Turk, G. L. Stephens, and V. N. Bringi, 1990: Microwave radiative transfer studies using combined multiparameter radar and radiometer measurements during COHMEX. J. Appl. Meteor., 29, 561585, doi:10.1175/1520-0450(1990)029<0561:MRTSUC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and V. N. Bringi, 1988: Dual-polarization observations of microbursts associated with intense convection: The 20 July storm during the MIST project. Mon. Wea. Rev., 116, 15211539, doi:10.1175/1520-0493(1988)116<1521:DPOOMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Woodard, C. J., L. D. Carey, W. A. Petersen, and W. P. Roeder, 2012: Operational utility of dual-polarization variables in lightning initiation forecasting. Electron. J. Oper. Meteor., 13, 79102.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, doi:10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zeng, Z., S. E. Yuter, R. A. Houze, and D. E. Kingsmill, 2001: Microphysics of the rapid development of heavy convective precipitation. Mon. Wea. Rev., 129, 18821904, doi:10.1175/1520-0493(2001)129<1882:MOTRDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and A. V. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80, 389406, doi:10.1175/1520-0477(1999)080<0389:PFWSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2515 1212 144
PDF Downloads 1773 658 57