Wind-Climate Estimation Based on Mesoscale and Microscale Modeling: Statistical–Dynamical Downscaling for Wind Energy Applications

Jake Badger Department for Wind Energy (DTU Wind Energy), Technical University of Denmark, Roskilde, Denmark

Search for other papers by Jake Badger in
Current site
Google Scholar
PubMed
Close
,
Helmut Frank Deutscher Wetterdienst, Offenbach am Main, Germany

Search for other papers by Helmut Frank in
Current site
Google Scholar
PubMed
Close
,
Andrea N. Hahmann Department for Wind Energy (DTU Wind Energy), Technical University of Denmark, Roskilde, Denmark

Search for other papers by Andrea N. Hahmann in
Current site
Google Scholar
PubMed
Close
, and
Gregor Giebel Department for Wind Energy (DTU Wind Energy), Technical University of Denmark, Roskilde, Denmark

Search for other papers by Gregor Giebel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper demonstrates that a statistical–dynamical method can be used to accurately estimate the wind climate at a wind farm site. In particular, postprocessing of mesoscale model output allows an efficient calculation of the local wind climate required for wind resource estimation at a wind turbine site. The method is divided into two parts: 1) preprocessing, in which the configurations for the mesoscale model simulations are determined, and 2) postprocessing, in which the data from the mesoscale simulations are prepared for wind energy application. Results from idealized mesoscale modeling experiments for a challenging wind farm site in northern Spain are presented to support the preprocessing method. Comparisons of modeling results with measurements from the same wind farm site are presented to support the postprocessing method. The crucial element in postprocessing is the bridging of mesoscale modeling data to microscale modeling input data, via a so-called generalization method. With this method, very high-resolution wind resource mapping can be achieved.

Corresponding author address: Jake Badger, Dept. of Wind Energy (DTU Wind Energy), Technical University of Denmark, Risø Campus, Frederiksborgvej 399, P.O. Box 49, 4000 Roskilde, Denmark. E-mail: jaba@dtu.dk

Abstract

This paper demonstrates that a statistical–dynamical method can be used to accurately estimate the wind climate at a wind farm site. In particular, postprocessing of mesoscale model output allows an efficient calculation of the local wind climate required for wind resource estimation at a wind turbine site. The method is divided into two parts: 1) preprocessing, in which the configurations for the mesoscale model simulations are determined, and 2) postprocessing, in which the data from the mesoscale simulations are prepared for wind energy application. Results from idealized mesoscale modeling experiments for a challenging wind farm site in northern Spain are presented to support the preprocessing method. Comparisons of modeling results with measurements from the same wind farm site are presented to support the postprocessing method. The crucial element in postprocessing is the bridging of mesoscale modeling data to microscale modeling input data, via a so-called generalization method. With this method, very high-resolution wind resource mapping can be achieved.

Corresponding author address: Jake Badger, Dept. of Wind Energy (DTU Wind Energy), Technical University of Denmark, Risø Campus, Frederiksborgvej 399, P.O. Box 49, 4000 Roskilde, Denmark. E-mail: jaba@dtu.dk
Save
  • Adrian, G., and F. Fiedler, 1991: Simulation of unstationary wind and temperature fields over complex terrain and comparison with observations. Beitr. Phys. Atmos., 64, 27–48.

    • Search Google Scholar
    • Export Citation
  • Astrup, P., N. O. Jensen, and T. Mikkelsen, 1996: Surface roughness model for LINCOM. Risø National Laboratory Tech. Rep. Risø-R-900(EN), Roskilde, Denmark, 30 pp. [Available online at http://www.rodos.fzk.de/Documents/Public/Handbook/Volume3/4_2_4_LINCOM.pdf.]

  • Badger, J., X. G. Larsén, A. Hahmann, N. G. Mortensen, J. C. Hansen, Z. Rong, Y. Zhenbin, and Y. Chunhong, 2011: Methods to assess uncertainty of wind resource estimates determined by mesoscale modelling. Proc. 2011 EWEA Annual Event, Brussels, Belgium, European Wind Energy Association. [Available online at http://proceedings.ewea.org/annual2011/programme/info2.php?id2=307&id=54%20&ordre=1.]

  • Badger, M., J. Badger, M. Nielsen, C. B. Hasager, and A. Peña, 2010: Wind class sampling of satellite SAR imagery for offshore wind resource mapping. J. Appl. Meteor. Climatol., 49, 24742491, doi:10.1175/2010JAMC2523.1.

    • Search Google Scholar
    • Export Citation
  • Bergström, H., 2001: Boundary-layer modelling for wind climate estimates. Wind Eng., 25, 289299, doi:10.1260/030952401760177864.

  • Frank, H. P., and L. Landberg, 1997: Modelling the wind climate of Ireland. Bound.-Layer Meteor., 85, 359377, doi:10.1023/A:1000552601288.

    • Search Google Scholar
    • Export Citation
  • Frank, H. P., O. Rathman, N. Mortensen, and L. Landberg, 2001: The numerical wind atlas—The KAMM/WASP method. Risø National Laboratory Tech. Rep. Risø-R-1252(EN), Roskilde, Denmark, 60 pp. [Available online at http://www.risoe.dk/rispubl/VEA/veapdf/ris-r-1252.pdf.]

  • Frey-Buness, F., D. Heimann, and R. Sausen, 1995: A statistical-dynamical downscaling procedure for global climate simulations. Theor. Appl. Climatol., 50, 117–131, doi:10.1007/BF00866111.

    • Search Google Scholar
    • Export Citation
  • Giebel, G., J. Badger, I. M. Perez, P. Louka, G. Kallos, A. M. Palomares, C. Lac, and G. Descombes, 2006: Short-term forecasting using advanced physical modelling—The results of the ANEMOS project. Results from mesoscale, microscale and CFD modelling. Proc. European Wind Energy Conf. Exhibition, Athens, Greece, European Wind Energy Association. [Available online at http://proceedings.ewea.org/ewec2006/allfiles2/967_Ewec2006fullpaper.pdf.]

  • Jiménez, P. A., E. García-Bustamante, J. González-Rouco, F. Valero, J. Montávez, and J. Navarro, 2008: Surface wind regionalization in complex terrain. J. Appl. Meteor. Climatol., 47, 308325, doi:10.1175/2007JAMC1483.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP–NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77,437–471.

  • Kariniotakis, G., and Coauthors, 2004: What performance can be expected by short-term wind power prediction models depending on site characteristics? Proc. European Wind Energy Conf. Exhibition, London, United Kingdom, European Wind Energy Association.

  • Klemp, J. B., and D. R. Durran, 1983: An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon. Wea. Rev., 111, 430444, doi:10.1175/1520-0493(1983)111<0430:AUBCPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Larsén, X. G., J. Badger, A. N. Hahmann, and N. G. Mortensen, 2012: The selective dynamical downscaling method for extreme-wind atlases. Wind Energy, 16, 1167–1182, doi:10.1002/we.1544.

    • Search Google Scholar
    • Export Citation
  • Leckebusch, G. C., B. Koffi, U. Ulbrich, J. G. Pinto, T. Spangehl, and S. Zacharias, 2006: Analysis of frequency and intensity of European winter storm events from a multi-model perspective, at synoptic and regional scales. Climate Res., 31, 5974, doi:10.3354/cr031059.

    • Search Google Scholar
    • Export Citation
  • Mengelkamp, H.-T., H. Kapitza, and U. Pflüger, 1997: Statistical-dynamical downscaling of wind climatologies. J. Wind Eng. Ind. Aerodyn., 67-68, 449457, doi:10.1016/S0167-6105(97)00093-7.

    • Search Google Scholar
    • Export Citation
  • Mortensen, N. G., and Coauthors, 2005: Wind Atlas for Egypt: Measurements and Modelling 1991-2005. New and Renewable Energy Authority, Egyptian Meteorological Authority, and Risø National Laboratory, 258 pp.

  • Pinto, J. G., C. P. Neuhaus, G. C. Leckebusch, M. Reyers, and M. Kerschgens, 2010: Estimation of wind storm impacts over western Germany under future climate conditions using a statistical–dynamical downscaling approach. Tellus, 62A, 188201, doi:10.1111/j.1600-0870.2009.00424.x.

    • Search Google Scholar
    • Export Citation
  • Rife, D. L., E. Vanvyve, J. O. Pinto, A. J. Monaghan, C. A. Davis, and G. S. Poulos, 2013: Selecting representative days for more efficient dynamical climate downscaling: Application to wind energy. J. Appl. Meteor. Climatol., 52, 4763, doi:10.1175/JAMC-D-12-016.1.

    • Search Google Scholar
    • Export Citation
  • Sempreviva, A. M., S. E. Larsen, N. G. Mortensen, and I. Troen, 1990: Response of neutral boundary layers to changes of roughness. Bound.-Layer Meteor.,50, 205–225, doi:10.1007/BF00120525.

  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, doi:10.1175/MWR2830.1.

    • Search Google Scholar
    • Export Citation
  • Sreevalsan, E., S. S. Das, R. S. Kumar, G. Arivukkodi, and J. Badger, 2010: Indian Wind Atlas.Centre for Wind Energy Technology, 351 pp.

  • Tammelin, B., and Coauthors, 2013: Production of the Finnish wind atlas. Wind Energy, 16, 1935, doi:10.1002/we.517.

  • Troen, I., and E. L. Petersen, 1989: European Wind Atlas.Risø National Laboratory, 656 pp.

  • Yu, W., R. Benoit, C. Girard, A. Glazer, D. Lemarquis, J. R. Salmon, and J. -P. Pinard, 2006: Wind Energy Simulation Toolkit (WEST): A wind mapping system for use by the wind-energy industry. Wind Eng., 30, 1533, doi:10.1260/030952406777641450.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1334 407 34
PDF Downloads 1025 257 11