An Optimized System for the Classification of Meteorological Drought Intensity with Applications in Drought Frequency Analysis

Hugo Carrão Climate Risk Management Unit, Institute for Environment and Sustainability, Joint Research Centre, European Commission, Ispra, Italy

Search for other papers by Hugo Carrão in
Current site
Google Scholar
PubMed
Close
,
Andrew Singleton Climate Risk Management Unit, Institute for Environment and Sustainability, Joint Research Centre, European Commission, Ispra, Italy

Search for other papers by Andrew Singleton in
Current site
Google Scholar
PubMed
Close
,
Gustavo Naumann Climate Risk Management Unit, Institute for Environment and Sustainability, Joint Research Centre, European Commission, Ispra, Italy

Search for other papers by Gustavo Naumann in
Current site
Google Scholar
PubMed
Close
,
Paulo Barbosa Climate Risk Management Unit, Institute for Environment and Sustainability, Joint Research Centre, European Commission, Ispra, Italy

Search for other papers by Paulo Barbosa in
Current site
Google Scholar
PubMed
Close
, and
Jürgen V. Vogt Climate Risk Management Unit, Institute for Environment and Sustainability, Joint Research Centre, European Commission, Ispra, Italy

Search for other papers by Jürgen V. Vogt in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The adequacy of meteorological drought intensity threshold levels based on deviations of monthly precipitation totals from normal climatological conditions is reconsidered. The motivation for this study is the observation that reference classification systems are fixed for all climatological regions, and threshold levels have been proposed without regard for the statistical distribution of accumulated precipitation in space and time. This misrepresentation of precipitation variability may lead to erroneous estimates of meteorological drought onset in specific areas where natural breaks in the cumulative distribution of monthly precipitation do not fit the generalized classification systems. In this study, a new optimized classification system based on the nonparametric “Fisher–Jenks” algorithm is proposed for the estimation of meteorological drought intensity threshold levels from monthly precipitation totals. The optimized classification system is compared using the tabular accuracy index (TAI) to three fixed classification systems that are proposed in the literature and widely applied in the operational setting. An assessment of drought intensity classifications with optimized and fixed threshold levels shows that 1) six optimized categories most accurately divide precipitation totals into the most appropriate drought intensities, 2) optimized thresholds always give considerably improved drought intensity category allocations over fixed thresholds with the same number of categories, and 3) fixed thresholds underestimate the drought onset. An analysis of monthly and long-term drought frequency for Latin America has been conducted for assessing the spatial link between meteorological drought intensity categories computed with the Fisher–Jenks algorithm and different climate classifications. The results show a systematic match between climate variability in the region and spatial patterns of meteorological drought intensity.

Corresponding author address: Paulo Barbosa, European Commission, Joint Research Centre (JRC), Institute for Environment and Sustainability (IES), Climate Risk Management Unit, Via Enrico Fermi 2749, 21027 Ispra VA, Italy. E-mail: paulo.barbosa@jrc.ec.europa.eu

Abstract

The adequacy of meteorological drought intensity threshold levels based on deviations of monthly precipitation totals from normal climatological conditions is reconsidered. The motivation for this study is the observation that reference classification systems are fixed for all climatological regions, and threshold levels have been proposed without regard for the statistical distribution of accumulated precipitation in space and time. This misrepresentation of precipitation variability may lead to erroneous estimates of meteorological drought onset in specific areas where natural breaks in the cumulative distribution of monthly precipitation do not fit the generalized classification systems. In this study, a new optimized classification system based on the nonparametric “Fisher–Jenks” algorithm is proposed for the estimation of meteorological drought intensity threshold levels from monthly precipitation totals. The optimized classification system is compared using the tabular accuracy index (TAI) to three fixed classification systems that are proposed in the literature and widely applied in the operational setting. An assessment of drought intensity classifications with optimized and fixed threshold levels shows that 1) six optimized categories most accurately divide precipitation totals into the most appropriate drought intensities, 2) optimized thresholds always give considerably improved drought intensity category allocations over fixed thresholds with the same number of categories, and 3) fixed thresholds underestimate the drought onset. An analysis of monthly and long-term drought frequency for Latin America has been conducted for assessing the spatial link between meteorological drought intensity categories computed with the Fisher–Jenks algorithm and different climate classifications. The results show a systematic match between climate variability in the region and spatial patterns of meteorological drought intensity.

Corresponding author address: Paulo Barbosa, European Commission, Joint Research Centre (JRC), Institute for Environment and Sustainability (IES), Climate Risk Management Unit, Via Enrico Fermi 2749, 21027 Ispra VA, Italy. E-mail: paulo.barbosa@jrc.ec.europa.eu
Save
  • Agnew, C. T., 2000: Using the SPI to identify drought. Drought Network News, Vol. 12, National Drought Mitigation Center, Lincoln, NE, 6–12. [Available online at http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1000&context=droughtnetnews.]

  • Allen, S. K., and Coauthors, 2012: Summary for policymakers. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, C. B. Field et al., Eds., Cambridge University Press, 1–19. [Available online at https://www.ipcc.ch/pdf/special-reports/srex/SREX_Full_Report.pdf.]

  • Armstrong, M. P., N. Xiao, and D. A. Bennett, 2003: Using genetic algorithms to create multicriteria class intervals for choropleth maps. Ann. Assoc. Amer. Geogr., 93, 595623, doi:10.1111/1467-8306.9303005.

    • Search Google Scholar
    • Export Citation
  • Caccamo, G., L. Chisholm, R. Bradstock, and M. Puotinen, 2011: Assessing the sensitivity of MODIS to monitor drought in high biomass ecosystems. Remote Sens. Environ., 115, 26262639, doi:10.1016/j.rse.2011.05.018.

    • Search Google Scholar
    • Export Citation
  • Carrão, H., G. Sepulcre, S. Horion, and P. Barbosa, 2013: A multitemporal and non-parametric approach for assessing the impacts of drought on vegetation greenness: A case study for Latin America. EARSeL eProc.,12, 8–24, doi:10.12760/01-2013-1-02.

  • Cormack, R. M., 1971: A review of classification. J. Roy. Stat. Soc., 134, 321367, doi:10.2307/2344237.

  • Cromley, R., and R. Mrozinski, 1997: An evaluation of classification schemes based on the statistical versus the spatial structure properties of geographic distribution in choropleth mapping. Proc. 13th Annual Auto-Carto Symp. and Exposition, Seattle, WA, Cartography and Geopgraphic Information Society, 76–85.

  • Dracup, J. A., K. S. Lee, and E. G. Paulson Jr., 1980: On the definition of droughts. Water Resour. Res., 16, 297302, doi:10.1029/WR016i002p00297.

    • Search Google Scholar
    • Export Citation
  • Fisher, W. D., 1958: On grouping for maximum homogeneity. J. Amer. Stat. Assoc., 53, 789798, doi:10.1080/01621459.1958.10501479.

  • Gong, X., and M. B. Richman, 1995: On the application of cluster analysis to growing season precipitation data in North America east of the Rockies. J. Climate, 8, 897931, doi:10.1175/1520-0442(1995)008<0897:OTAOCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goodrich, G. B., and A. W. Ellis, 2006: Climatological drought in Arizona: An analysis of indicators for guiding the governor’s drought task force. Prof. Geogr., 58, 460469, doi:10.1111/j.1467-9272.2006.00582.x.

    • Search Google Scholar
    • Export Citation
  • Gouveia, C., R. M. Trigo, and C. C. DaCamara, 2009: Drought and vegetation stress monitoring in Portugal using satellite data. Nat. Hazards Earth Syst. Sci., 9, 185195, doi:10.5194/nhess-9-185-2009.

    • Search Google Scholar
    • Export Citation
  • Guttman, N. B., 1993: The use of L-moments in the determination of regional precipitation climates. J. Climate, 6, 23092325, doi:10.1175/1520-0442(1993)006<2309:TUOLMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guttman, N. B., 1999: Accepting the standardized precipitation index: A calculation algorithm. J. Amer. Water Resour. Assoc., 35, 311322, doi:10.1111/j.1752-1688.1999.tb03592.x.

    • Search Google Scholar
    • Export Citation
  • Hayes, M. J., M. D. Svoboda, D. A. Wilhite, and O. V. Vanyarkho, 1999: Monitoring the 1996 drought using the standardized precipitation index. Bull. Amer. Meteor. Soc., 80, 429438, doi:10.1175/1520-0477(1999)080<0429:MTDUTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heim, R. R., 2002: A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc., 83, 11491165.

  • Hofer, B., H. Carrão, and D. McInerney, 2012: Multi-disciplinary forest fire danger assessment in Europe: The potential to integrate long-term drought information. Int. J. Spat. Data Infrastruct. Res., 7, 300322, doi:10.2902/1725-0463.2012.07.art15.

    • Search Google Scholar
    • Export Citation
  • Jenks, G. F., and F. C. Caspall, 1971: Error on choroplethic maps: Definition, measurement, reduction. Ann. Assoc. Amer. Geogr., 61, 217244, doi:10.1111/j.1467-8306.1971.tb00779.x.

    • Search Google Scholar
    • Export Citation
  • Keyantash, J., and J. A. Dracup, 2002: The quantification of drought: An evaluation of drought indices. Bull. Amer. Meteor. Soc., 83, 11671180.

    • Search Google Scholar
    • Export Citation
  • Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, 2006: World map of the Köppen–Geiger climate classification updated. Meteor. Z., 15, 259263, doi:10.1127/0941-2948/2006/0130.

    • Search Google Scholar
    • Export Citation
  • Kumar, M. N., C. S. Murthy, M. V. R. S. Sai, and P. S. Roy, 2009: On the use of Standardized Precipitation Index (SPI) for drought intensity assessment. Meteor. Appl., 16, 381389, doi:10.1002/met.136.

    • Search Google Scholar
    • Export Citation
  • Llano, M. P., W. Vargas, and G. Naumann, 2012: Climate variability in areas of the world with high production of soya beans and corn: Its relationship to crop yields. Meteor. Appl., 19, 385396, doi:10.1002/met.270.

    • Search Google Scholar
    • Export Citation
  • Lloyd-Hughes, B., and M. A. Saunders, 2002: A drought climatology for Europe. Int. J. Climatol., 22, 15711592, doi:10.1002/joc.846.

  • Logar, I., and J. C. J. M. van den Bergh, 2011: Methods for assessment of the costs of droughts. CONHAZ Rep. WP05, 58 pp. [Available online at http://conhaz.org/CONHAZ%20REPORT%20WP05_1_FINAL.pdf.]

  • Magrin, G., C. G. Garca, D. C. Choque, J. C. Gimnez, A. R. Moreno, G. J. Nagy, C. Nobre, and A. Villamizar, 2007: Latin America. Climate Change 2007: Impacts, Adaptation and Vulnerability, M. L. Parry et al., Eds., Cambridge University Press, 581–615. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar4/wg2/ar4-wg2-chapter13.pdf.]

  • Maidment, D. R., 1993: Handbook of Hydrology. McGraw-Hill, 1424 pp.

  • Makkonen, L., 2006: Plotting positions in extreme value analysis. J. Appl. Meteor. Climatol., 45, 334340, doi:10.1175/JAM2349.1.

  • McKee, T. B., N. J. Doeskin, and J. Kleist, 1993: The relationship of drought frequency and duration to time scales. Proc. Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179184.

  • Meyer, V., and Coauthors, 2013: Review article: Assessing the costs of natural hazards—State of the art and knowledge gaps. Nat. Hazards Earth Syst. Sci., 13, 13511373, doi:10.5194/nhess-13-1351-2013.

    • Search Google Scholar
    • Export Citation
  • Mishra, A. K., and V. P. Singh, 2011: Drought modeling—A review. J. Hydrol., 403, 157175, doi:10.1016/j.jhydrol.2011.03.049.

  • Mishra, A. K., V. P. Singh, and V. R. Desai, 2009: Drought characterization: A probabilistic approach. Stochastic Environ. Res. Risk Assess., 23, 4155, doi:10.1007/s00477-007-0194-2.

    • Search Google Scholar
    • Export Citation
  • Morid, S., V. Smakhtin, and M. Moghaddasi, 2006: Comparison of seven meteorological indices for drought monitoring in Iran. Int. J. Climatol., 26, 971985, doi:10.1002/joc.1264.

    • Search Google Scholar
    • Export Citation
  • Naumann, G., P. Barbosa, H. Carrão, A. Singleton, and J. Vogt, 2012: Monitoring drought conditions and their uncertainties in Africa using TRMM data. J. Appl. Meteor. Climatol., 51, 18671874, doi:10.1175/JAMC-D-12-0113.1.

    • Search Google Scholar
    • Export Citation
  • Ntale, H. K., and T. Y. Gan, 2003: Drought indices and their application to East Africa. Int. J. Climatol., 23, 13351357, doi:10.1002/joc.931.

    • Search Google Scholar
    • Export Citation
  • Panu, U., and T. Sharma, 2002: Challenges in drought research: Some perspectives and future directions. Hydrol. Sci. J., 47, 1930, doi:10.1080/02626660209493019.

    • Search Google Scholar
    • Export Citation
  • Paulo, A. A., E. Ferreira, C. Coelho, and L. S. Pereira, 2005: Drought class transition analysis through Markov and loglinear models, an approach to early warning. Agric. Water Manage., 77, 5981, doi:10.1016/j.agwat.2004.09.039.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. L., and Coauthors, 2009: Drought sensitivity of the Amazon rainforest. Science, 323, 13441347, doi:10.1126/science.1164033.

    • Search Google Scholar
    • Export Citation
  • Quiring, S. M., 2009: Developing objective operational definitions for monitoring drought. J. Appl. Meteor. Climatol., 48, 12171229, doi:10.1175/2009JAMC2088.1.

    • Search Google Scholar
    • Export Citation
  • Rudolf, B., A. Becker, U. Schneider, A. Meyer-Christoffer, and M. Ziese, 2011: New GPCC Full Data Reanalysis Version 5 provides high-quality gridded monthly precipitation data. GEWEX News, Vol. 21, International GEWEX Project Office, Silver Spring, MD, 4–5.

  • Santos, J. F., I. Pulido-Calvo, and M. M. Portela, 2010: Spatial and temporal variability of droughts in Portugal. Water Resour. Res., 46, W03503, doi:10.1029/2009WR008071.

    • Search Google Scholar
    • Export Citation
  • Sepulcre-Canto, G., S. Horion, A. Singleton, H. Carrão, and J. Vogt, 2012: Development of a Combined Drought Indicator to detect agricultural drought in Europe. Nat. Hazards Earth Syst. Sci., 12, 35193531, doi:10.5194/nhess-12-3519-2012.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., K. M. Andreadis, E. F. Wood, and D. P. Lettenmaier, 2009: Global and continental drought in the second half of the twentieth century: Severity–area–duration analysis and temporal variability of large-scale events. J. Climate, 22, 19621981, doi:10.1175/2008JCLI2722.1.

    • Search Google Scholar
    • Export Citation
  • Slocum, T. A., R. B. McMaster, F. C. Kessler, and H. H. Howard, 2008: Thematic Cartography and Geovisualization. 3rd ed. Prentice Hall, 576 pp.

    • Search Google Scholar
    • Export Citation
  • Smakhtin, V. U., and E. L. F. Schipper, 2008: Droughts: The impact of semantics and perceptions. Water Policy, 10, 131143, doi:10.2166/wp.2008.036.

    • Search Google Scholar
    • Export Citation
  • Steinemann, A., 2003: Drought indicators and triggers: A stochastic approach to evaluation. J. Amer. Water Resour. Assoc., 39, 12171233.

    • Search Google Scholar
    • Export Citation
  • Steinemann, A., and L. Cavalcanti, 2006: Developing multiple indicators and triggers for drought plans. J. Water Resour. Plann. Manage., 132, 164174, doi:10.1061/(ASCE)0733-9496(2006)132:3(164).

    • Search Google Scholar
    • Export Citation
  • Svoboda, M., and Coauthors, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190.

  • Svoboda, M., M. Hayes, and D. Wood, 2012: Standardized precipitation index user guide. World Meteorological Organization Tech. Rep. WMO-1090, 24 pp. [Available online at http://library.wmo.int/opac/index.php?lvl=notice_display&id=13682#.U6nTbvldVik.]

  • Traun, C., and M. Loidl, 2012: Autocorrelation-based regioclassification—A self-calibrating classification approach for choropleth maps explicitly considering spatial autocorrelation. Int. J. Geogr. Inf. Sci., 26, 923939, doi:10.1080/13658816.2011.614246.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K., and D. Stepaniak, 2001: Indices of El Niño evolution. J. Climate, 14, 16971701, doi:10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vargas, W. M., G. Naumann, and J. L. Minetti, 2011: Dry spells in the River Plata Basin: An approximation of the diagnosis of droughts using daily data. Theor. Appl. Climatol., 104, 159173, doi:10.1007/s00704-010-0335-2.

    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., 2006: Spatial and temporal analysis of droughts in the Iberian Peninsula (1910–2000). Hydrol. Sci. J., 51, 8397, doi:10.1623/hysj.51.1.83.

    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., J. C. González-Hidalgo, M. de Luis, and J. Raventós, 2004: Drought patterns in the Mediterranean area: The Valencia region (eastern Spain). Climate Res., 26, 515, doi:10.3354/cr026005.

    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., S. Beguería, and J. I. López-Moreno, 2010: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Climate, 23, 16961718, doi:10.1175/2009JCLI2909.1.

    • Search Google Scholar
    • Export Citation
  • Weibull, W., 1939: The Phenomenon of Rupture in Solids. Handlingar, Vol. 153, Ingeniörs Vetenskaps Akademien, 45 pp.

  • Wilhite, D. A., and M. H. Glantz, 1985: Understanding the drought phenomenon: The role of definitions. Water Int., 10, 111120, doi:10.1080/02508068508686328.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2005: Statistical Methods in the Atmospheric Sciences: An Introduction. 2nd ed. Academic Press, 648 pp.

  • Wu, H., M. J. Hayes, D. A. Wilhite, and M. D. Svoboda, 2005: The effect of the length of record on the standardized precipitation index calculation. Int. J. Climatol., 25, 505520, doi:10.1002/joc.1142.

    • Search Google Scholar
    • Export Citation
  • Yadav, S., R. Redden, J. Hatfield, H. Lotze-Campen, and A. Hall, 2011: Crop Adaptation to Climate Change. Wiley, 624 pp.

  • Zhao, M., and S. W. Running, 2010: Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329, 940943, doi:10.1126/science.1192666.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 839 340 14
PDF Downloads 585 152 12