Use of Radar Chaff for Studying Circulations in and around Shallow Cumulus Clouds

Eunsil Jung Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Eunsil Jung in
Current site
Google Scholar
PubMed
Close
and
Bruce Albrecht Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Bruce Albrecht in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Circulations in and around cumulus clouds are inferred by using a passive tracer (radar chaff) and an airborne cloud radar during the Barbados Aerosol Cloud Experiment (BACEX). The radar chaff elements used for this experiment are fibers that are cut to a length of about ½ of the radar wavelength to maximize radar returns by serving as dipole antennas. The fibers are packed in fiber tubes and are mounted in a dispenser beneath the wing of the aircraft. The chaff was released near the tops and edges of a growing small cumulus cloud. The aircraft then made penetrations of the cloud at lower levels to observe the chaff signals above the aircraft with the zenith-pointing cloud radar. This study shows that the environmental air above the cloud top descends along the downshear side of the cloud edge and is subsequently entrained back into the same cloud near the observation level. The in-cloud flow follows an inverted letter P pattern. The merits and limitations of the chaff method for tracking circulations in and around small cumuli are discussed.

Corresponding author address: Eunsil Jung, RSMAS/MPO, University of Miami, 4600 Rickenbacker Cswy., Miami, FL 33149. E-mail: eunsil.jung@gmail.com

Abstract

Circulations in and around cumulus clouds are inferred by using a passive tracer (radar chaff) and an airborne cloud radar during the Barbados Aerosol Cloud Experiment (BACEX). The radar chaff elements used for this experiment are fibers that are cut to a length of about ½ of the radar wavelength to maximize radar returns by serving as dipole antennas. The fibers are packed in fiber tubes and are mounted in a dispenser beneath the wing of the aircraft. The chaff was released near the tops and edges of a growing small cumulus cloud. The aircraft then made penetrations of the cloud at lower levels to observe the chaff signals above the aircraft with the zenith-pointing cloud radar. This study shows that the environmental air above the cloud top descends along the downshear side of the cloud edge and is subsequently entrained back into the same cloud near the observation level. The in-cloud flow follows an inverted letter P pattern. The merits and limitations of the chaff method for tracking circulations in and around small cumuli are discussed.

Corresponding author address: Eunsil Jung, RSMAS/MPO, University of Miami, 4600 Rickenbacker Cswy., Miami, FL 33149. E-mail: eunsil.jung@gmail.com
Save
  • Baker, M., R. G. Corbin, and J. Latham, 1980: The influence of entrainment on the evolution of cloud droplet spectra. 1. A model of inhomogeneous mixing. Quart. J. Roy. Meteor. Soc., 106, 581598, doi:10.1002/qj.49710644914.

    • Search Google Scholar
    • Export Citation
  • Bladé, I., and D. L. Hartmann, 1993: Tropical intraseasonal oscillations in a simple nonlinear model. J. Atmos. Sci., 50, 29222939, doi:10.1175/1520-0469(1993)050<2922:TIOIAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., 1993: Entrainment in cumulus clouds. J. Appl. Meteor., 32, 626641, doi:10.1175/1520-0450(1993)032<0626:EICC>2.0.CO;2.

  • Blyth, A. M., W. A. Cooper, and J. B. Jensen, 1988: A study of the source of entrained air in Montana cumuli. J. Atmos. Sci., 45, 39443964, doi:10.1175/1520-0469(1988)045<3944:ASOTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carpenter, R. L., K. K. Droegemeier, and A. M. Blyth, 1998: Entrainment and detrainment in numerically simulated cumulus congestus clouds. Part III: Parcel analysis. J. Atmos. Sci., 55, 34403455, doi:10.1175/1520-0469(1998)055<3440:EADINS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chandra, A. S., P. Kollias, S. E. Giangrande, and S. A. Klein, 2010: Long-term observations of the convective boundary layer using insect radar returns at the SGP ARM Climate Research Facility. J. Climate, 23, 56995714, doi:10.1175/2010JCLI3395.1.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., S. G. Lasher-Trapp, and A. M. Blyth, 2013: The Influence of entrainment and mixing on the initial formation of rain in a warm cumulus cloud. J. Atmos. Sci., 70, 17271743, doi:10.1175/JAS-D-12-0128.1.

    • Search Google Scholar
    • Export Citation
  • Damiani, R., G. Vali, and S. Haimov, 2006: The structure of thermals in cumulus from airborne dual-Doppler radar observations. J. Atmos. Sci., 63, 14321450, doi:10.1175/JAS3701.1.

    • Search Google Scholar
    • Export Citation
  • Dehghan, A., and W. K. Hocking, 2011: Instrumental errors in spectral-width turbulence measurements by radars. J. Atmos. Sol. Terr. Phys., 73, 10521068, doi:10.1016/j.jastp.2010.11.011.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., P. G. Black, and W. M. Gray, 2002: Flight-level thermodynamic instrument wetting errors in hurricanes. Part I: Observations. Mon. Wea. Rev., 130, 825841, doi:10.1175/1520-0493(2002)130<0825:FLTIWE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frisch, A. S., C. W. Fairall, and J. B. Snider, 1995: Measurement of stratus cloud and drizzle parameters in ASTEX with a Kα-band Doppler radar and a microwave radiometer. J. Atmos. Sci., 52, 27882799, doi:10.1175/1520-0469(1995)052<2788:MOSCAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gerber, H., B. G. Arends, and A. S. Ackerman, 1994: New microphysics sensor for aircraft use. Atmos. Res., 31, 235252, doi:10.1016/0169-8095(94)90001-9.

    • Search Google Scholar
    • Export Citation
  • Gerber, H., G. M. Frick, J. B. Jensen, and J. G. Hudson, 2008: Entrainment, mixing, and microphysics in trade-wind cumulus. J. Meteor. Soc. Japan, 86A, 87106, doi:10.2151/jmsj.86A.87.

    • Search Google Scholar
    • Export Citation
  • Heus, T., and H. J. J. Jonker, 2008: Subsiding shells around shallow cumulus clouds. J. Atmos. Sci., 65, 10031018, doi:10.1175/2007JAS2322.1.

    • Search Google Scholar
    • Export Citation
  • Heus, T., G. van Dijk, H. J. J. Jonker, and H. E. A. Van den Akker, 2008: Mixing in shallow cumulus clouds studied by Lagrangian particle tracking. J. Atmos. Sci., 65, 25812597, doi:10.1175/2008JAS2572.1.

    • Search Google Scholar
    • Export Citation
  • Jensen, J. B., and A. M. Blyth, 1988: Comment on “Mixing mechanisms in cumulus congestus clouds. Part I: Observations.” J. Atmos. Sci., 45, 24602463, doi:10.1175/1520-0469(1988)045<2460:COMICC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johari, H., 1992: Mixing in thermals with and without buoyancy reversal. J. Atmos. Sci., 49, 14121426, doi:10.1175/1520-0469(1992)049<1412:MITWAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jonas, P. R., 1990: Observations of cumulus cloud entrainment. Atmos. Res., 25, 105127, doi:10.1016/0169-8095(90)90008-Z.

  • Jung, E., 2012: Aerosol-cloud-precipitation interactions in the trade wind boundary layer. Ph.D. dissertation, University of Miami, 184 pp. [Available online at http://scholarlyrepository.miami.edu/oa_dissertations/900.]

  • Jung, E., B. A. Albrecht, J. M. Prospero, H. H. Jonsson, and S. M. Kreidenweis, 2013: Vertical structure of aerosols, temperature and moisture associated with an intense African dust event observed over the eastern Caribbean. J. Geophys. Res. Atmos., 118, 46234643, doi:10.1002/jgrd.50352.

    • Search Google Scholar
    • Export Citation
  • Kitchen, M., and S. J. Caughey, 1981: Tethered-balloon observations of the structure of small cumulus clouds. Quart. J. Roy. Meteor. Soc., 107, 853874, doi:10.1002/qj.49710745407.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., B. A. Albrecht, R. Lhermitte, and A. Savtchenko, 2001: Radar observations of updrafts, downdrafts, and turbulence in fair weather cumuli. J. Atmos. Sci., 58, 17501766, doi:10.1175/1520-0469(2001)058<1750:ROOUDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lasher-Trapp, S., W. A. Cooper, and A. M. Blyth, 2005: Broadening of droplet size distributions from entrainment and mixing in a cumulus cloud. Quart. J. Roy. Meteor. Soc., 131, 195220, doi:10.1256/qj.03.199.

    • Search Google Scholar
    • Export Citation
  • Lehmann, K., H. Siebert, and R. A. Shaw, 2009: Homogeneous and inhomogeneous mixing in cumulus clouds: Dependence on local turbulence structure. J. Atmos. Sci., 66, 36413659, doi:10.1175/2009JAS3012.1.

    • Search Google Scholar
    • Export Citation
  • Lu, C., Y. Liu, and S. Niu, 2011: Examination of turbulent entrainment mixing mechanisms using a combined approach. J. Geophys. Res., 116, D20207, doi:10.1029/2011JD015944.

    • Search Google Scholar
    • Export Citation
  • Moninger, W. R., and R. A. Kropfli, 1987: A technique to measure entrainment in cloud by dual-polarization radar and chaff. J. Atmos. Oceanic Technol., 4, 7583, doi:10.1175/1520-0426(1987)004<0075:ATTMEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., 1997: Doppler radar spectral width broadening due to beamwidth and wind shear. Ann. Geophys., 15, 786796, doi:10.1007/s00585-997-0786-7.

    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., 1979: The entrainment mechanism in Colorado cumuli. J. Atmos. Sci., 36, 24672478, doi:10.1175/1520-0469(1979)036<2467:TEMICC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2007: Rain in shallow cumulus over the ocean: The RICO campaign. Bull. Amer. Meteor. Soc., 88, 19121928, doi:10.1175/BAMS-88-12-1912.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and Z. Kuang, 2010: Nature versus nurture in shallow convection. J. Atmos. Sci., 67, 16551666, doi:10.1175/2009JAS3307.1.

    • Search Google Scholar
    • Export Citation
  • Stith, J. L., 1992: Observations of cloud-top entrainment in cumuli. J. Atmos. Sci., 49, 13341347, doi:10.1175/1520-0469(1992)049<1334:OOCTEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and B. Geerts, 2009: Estimating the evaporative cooling bias of an airborne reverse flow thermometer. J. Atmos. Oceanic Technol., 26, 321, doi:10.1175/2008JTECHA1127.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., B. Geerts, and J. French, 2009: Dynamics of the cumulus cloud margin: An observational study. J. Atmos. Sci., 66, 36603677, doi:10.1175/2009JAS3129.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and P. H. Austin, 2005: Life cycle of numerically simulated shallow cumulus clouds. Part II: Mixing dynamics. J. Atmos. Sci., 62, 12911310, doi:10.1175/JAS3415.1.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and A. V. Ryzhkov, 2004: Polarimetric properties of chaff. J. Atmos. Oceanic Technol., 21, 10171024, doi:10.1175/1520-0426(2004)021<1017:PPOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1195 498 78
PDF Downloads 214 63 4