Use of the GOES-R Split-Window Difference to Diagnose Deepening Low-Level Water Vapor

Daniel T. Lindsey NOAA Center for Satellite Applications and Research, Fort Collins, Colorado

Search for other papers by Daniel T. Lindsey in
Current site
Google Scholar
PubMed
Close
,
Louie Grasso Cooperative Institute for Research of the Atmosphere, Fort Collins, Colorado

Search for other papers by Louie Grasso in
Current site
Google Scholar
PubMed
Close
,
John F. Dostalek Cooperative Institute for Research of the Atmosphere, Fort Collins, Colorado

Search for other papers by John F. Dostalek in
Current site
Google Scholar
PubMed
Close
, and
Jochen Kerkmann EUMETSAT, Darmstadt, Germany

Search for other papers by Jochen Kerkmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The depth of boundary layer water vapor plays a critical role in convective cloud formation in the warm season, but numerical models often struggle with accurate predictions of above-surface moisture. Satellite retrievals of water vapor have been developed, but they are limited by the use of a model’s first guess, instrument spectral resolution, horizontal footprint size, and vertical resolution. In 2016, Geostationary Operational Environmental Satellite-R (GOES-R), the first in a series of new-generation geostationary satellites, will be launched. Its Advanced Baseline Imager will provide unprecedented spectral, spatial, and temporal resolution. Among the bands are two centered at 10.35 and 12.3 μm. The brightness temperature difference between these bands is referred to as the split-window difference, and has been shown to provide information about atmospheric column water vapor. In this paper, the split-window difference is reexamined from the perspective of GOES-R and radiative transfer model simulations are used to better understand the factors controlling its value. It is shown that the simple split-window difference can provide useful information for forecasters about deepening low-level water vapor in a cloud-free environment.

Corresponding author address: Daniel T. Lindsey, CIRA/Colorado State University, 1375 Campus Delivery, Fort Collins, CO 80523-1375. E-mail: dan.lindsey@noaa.gov

Abstract

The depth of boundary layer water vapor plays a critical role in convective cloud formation in the warm season, but numerical models often struggle with accurate predictions of above-surface moisture. Satellite retrievals of water vapor have been developed, but they are limited by the use of a model’s first guess, instrument spectral resolution, horizontal footprint size, and vertical resolution. In 2016, Geostationary Operational Environmental Satellite-R (GOES-R), the first in a series of new-generation geostationary satellites, will be launched. Its Advanced Baseline Imager will provide unprecedented spectral, spatial, and temporal resolution. Among the bands are two centered at 10.35 and 12.3 μm. The brightness temperature difference between these bands is referred to as the split-window difference, and has been shown to provide information about atmospheric column water vapor. In this paper, the split-window difference is reexamined from the perspective of GOES-R and radiative transfer model simulations are used to better understand the factors controlling its value. It is shown that the simple split-window difference can provide useful information for forecasters about deepening low-level water vapor in a cloud-free environment.

Corresponding author address: Daniel T. Lindsey, CIRA/Colorado State University, 1375 Campus Delivery, Fort Collins, CO 80523-1375. E-mail: dan.lindsey@noaa.gov
Save
  • Bikos, D., and Coauthors, 2012: Synthetic satellite imagery for real-time high-resolution model evaluation. Wea. Forecasting, 27, 784795, doi:10.1175/WAF-D-11-00130.1.

    • Search Google Scholar
    • Export Citation
  • Chesters, D., L. W. Uccellini, and W. D. Robinson, 1983: Low-level water vapor fields from the VISSR Atmospheric Sounder (VAS) “split window” channels. J. Climate Appl. Meteor., 22, 725743, doi:10.1175/1520-0450(1983)022<0725:LLWVFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dostalek, J. F., and T. J. Schmit, 2001: Total precipitable water measurements from GOES sounder derived product imagery. Wea. Forecasting, 16, 573587, doi:10.1175/1520-0434(2001)016<0573:TPWMFG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Griffith, P. C., A. Bell, J. Van Naarden, E. Hoffman, and C. Ellsworth, 2011: ABI flight performance predictions based on prototype model (PTM) test results. Seventh GOES Users’ Conf., Birmingham, AL, NOAA/NASA, P4.1. [Available online at http://www.goes-r.gov/downloads/GUC-7/poster-sessions/4-01-ABI_flight_perf_pred.pdf.]

  • Han, Y., P. van Delst, Q. Liu, F. Weng, B. Yan, R. Treadon, and J. Derber, 2006: JCSDA Community Radiative Transfer Model (CRTM)—version 1. NOAA Tech. Rep. NESDIS 122, 40 pp.

  • Jin, X., J. Li, T. J. Schmit, J. Li, M. D. Goldberg, and J. J. Gurka, 2008: Retrieving clear-sky atmospheric parameters from SEVIRI and ABI infrared radiances. J. Geophys. Res., 113, D15310, doi:10.1029/2008JD010040.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., S. R. Dembek, S. J. Weiss, J. L. Case, J. J. Levit, and R. A. Sobash, 2010: Extracting unique information from high-resolution forecast models: Monitoring selected fields and phenomena every time step. Wea. Forecasting, 25, 15361542, doi:10.1175/2010WAF2222430.1.

    • Search Google Scholar
    • Export Citation
  • Kleespies, J. T., and L. M. McMillin, 1990: Retrieval of precipitable water from observations in the split window over varying surface temperatures. J. Appl. Meteor., 29, 851862, doi:10.1175/1520-0450(1990)029<0851:ROPWFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koenig, M., and E. de Coning, 2009: The MSG global instability indices product and its use as a nowcasting tool. Wea. Forecasting, 24, 272285, doi:10.1175/2008WAF2222141.1.

    • Search Google Scholar
    • Export Citation
  • Lee, Y.-K., Z. Li, J. Li, and T. J. Schmit, 2014: Evaluation of the GOES-R ABI LAP retrieval algorithm using the GOES-13 sounder. J. Atmos. Oceanic Technol., 31, 319, doi:10.1175/JTECH-D-13-00028.1.

    • Search Google Scholar
    • Export Citation
  • Li, Z., J. Li, W. P. Menzel, T. J. Schmit, J. P. Nelson III, J. Daniels, and S. A. Ackerman, 2008: GOES sounding improvement and applications to severe storm nowcasting. Geophys. Res. Lett., 35, L03806, doi:10.1029/2007GL032797.

    • Search Google Scholar
    • Export Citation
  • Lindsey, D. T., T. J. Schmit, W. M. MacKenzie Jr., C. P. Jewett, M. M. Gunshor, and L. Grasso, 2012: 10.35 µm: Atmospheric window on the GOES-R Advanced Baseline Imager with less moisture attenuation. J. Appl. Remote Sens., 6, 063598, doi:10.1117/1.JRS.6.063598.

    • Search Google Scholar
    • Export Citation
  • Ma, X. L., T. J. Schmit, and W. L. Smith, 1999: A nonlinear physical retrieval algorithm—Its application to the GOES-8/9 sounder. J. Appl. Meteor., 38, 501513, doi:10.1175/1520-0450(1999)038<0501:ANPRAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., and J. F. W. Purdom, 1994: Introducing GOES-I: The first of a new generation of Geostationary Operational Environmental Satellites. Bull. Amer. Meteor. Soc., 75, 757782, doi:10.1175/1520-0477(1994)075<0757:IGITFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moller, A. R., 2001: Severe local storms forecasting. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 433–480.

  • Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier, 2002: An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc.,83, 977–992, doi:10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2.

  • Schmit, T. J., M. M. Gunshor, W. P. Menzel, J. Li, S. Bachmeier, and J. J. Gurka, 2005: Introducing the next-generation Advanced Baseline Imager (ABI) on GOES-R. Bull. Amer. Meteor. Soc., 86, 10791096, doi:10.1175/BAMS-86-8-1079.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., J. Li, J. J. Gurka, M. D. Goldberg, K. J. Schrab, J. Li, and W. F. Feltz, 2008: The GOES-R Advanced Baseline Imager and the continuation of current sounder products. J. Appl. Meteor. Climatol., 47, 26962711, doi:10.1175/2008JAMC1858.1.

    • Search Google Scholar
    • Export Citation
  • Schroedter-Homscheidt, M., A. Drews, and S. Heise, 2008: Total water vapor column retrieval from MSG-SEVIRI split window measurements exploiting the daily cycle of land surface temperatures. Remote Sens. Environ., 112, 249258, doi:10.1016/j.rse.2007.05.006.

    • Search Google Scholar
    • Export Citation
  • Seemann, S. W., E. E. Borbas, R. O. Knuteson, G. R. Stephenson, and H.-L. Huang, 2008: Development of a global infrared land surface emissivity database for application to clear sky sounding retrievals from multispectral satellite radiance measurements. J. Appl. Meteor. Climatol., 47, 108123, doi:10.1175/2007JAMC1590.1.

    • Search Google Scholar
    • Export Citation
  • Sieglaff, J. M., T. J. Schmit, W. P. Menzel, and S. A. Ackerman, 2009: Inferring convective weather characteristics with geostationary high spectral resolution IR window measurements: A look into the future. J. Atmos. Oceanic Technol., 26, 15271541, doi:10.1175/2009JTECHA1210.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 861 323 40
PDF Downloads 514 208 12