• Bateni, S. M., and D. Entekhabi, 2012: Relative efficiency of land surface energy balance components. Water Resour. Res., 48, W04510, doi:10.1029/2011WR011357.

    • Search Google Scholar
    • Export Citation
  • Berthier, E., S. Dupont, P. G. Mestayer, and H. Andrieu, 2006: Comparison of two evapotranspiration schemes on a sub-urban site. J. Hydrol., 328, 635646.

    • Search Google Scholar
    • Export Citation
  • Bhaskar, A. S., and C. Welty, 2012: Water balances along an urban-to-rural gradient of metropolitan Baltimore, 2001–2009. Environ. Eng. Geosci., 18, 3750, doi:10.2113/gseegeosci.18.1.37.

    • Search Google Scholar
    • Export Citation
  • Bohnenstengel, S. I., S. Evans, P. A. Clark, and S. E. Belcher, 2011: Simulations of the London urban heat island. Quart. J. Roy. Meteor. Soc., 137, 16251640, doi:10.1002/qj.855.

    • Search Google Scholar
    • Export Citation
  • Ching, J., 1985: Urban-scale variations of turbulence parameters and fluxes. Bound.-Layer Meteor., 33, 335361, doi:10.1007/BF00116683.

    • Search Google Scholar
    • Export Citation
  • Christen, A., 2005: Atmospheric Turbulence and Surface Energy Exchange in Urban Environments: Results from the Basel Urban Boundary Layer Experiment (BUBBLE). University of Basel, 140 pp.

  • Christen, A., and R. Vogt, 2004: Energy and radiation balance of a central European city. Int. J. Climatol., 24, 13951421, doi:10.1002/joc.1074.

    • Search Google Scholar
    • Export Citation
  • Coutts, A. M., J. Beringer, and N. J. Tapper, 2007: Impact of increasing urban density on local climate: Spatial and temporal variations in the surface energy balance in Melbourne, Australia. J. Appl. Meteor. Climatol., 46, 477493, doi:10.1175/JAM2462.1.

    • Search Google Scholar
    • Export Citation
  • Crawford, B., C. S. B. Grimmond, and A. Christen, 2011: Five years of carbon dioxide fluxes measurements in a highly vegetated suburban area. Atmos. Environ., 45, 896905, doi:10.1016/j.atmosenv.2010.11.017.

    • Search Google Scholar
    • Export Citation
  • Foken, T., M. Göockede, M. Mauder, L. Mahrt, B. Amiro, and W. Munger, 2005: Post-field data quality control. Handbook of Micrometeorology, X. Lee, W. Massman, and B. Law, Eds., Kluwer Academic, 181–208.

  • Gentine, P., D. Entekhabi, and J. Polcher, 2011: The diurnal behavior of evaporative fraction in the soil–vegetation–atmospheric boundary layer continuum. J. Hydrometeor., 12, 15301546, doi:10.1175/2011JHM1261.1.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and T. R. Oke, 1999: Heat storage in urban areas: Local-scale observations and evaluation of a simple model. J. Appl. Meteor., 38, 922940, doi:10.1175/1520-0450(1999)038<0922:HSIUAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and T. R. Oke, 2002: Turbulent heat fluxes in urban areas: Observations and a local-scale urban meteorological parameterization scheme (LUMPS). J. Appl. Meteor., 41, 792810, doi:10.1175/1520-0450(2002)041<0792:THFIUA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., J. A. Salmond, T. R. Oke, B. Offerle, and A. Lemonsu, 2004: Flux and turbulence measurements at a densely built-up site in Marseille: Heat, mass (water and carbon dioxide), and momentum. J. Geophys. Res., 109, D24101, doi:10.1029/2004JD004936.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and Coauthors, 2010: The International Urban Energy Balance Models Comparison Project: First results from phase 1. J. Appl. Meteor. Climatol., 49, 12681292, doi:10.1175/2010JAMC2354.1.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and Coauthors, 2011: Initial results from phase 2 of the International Urban Energy Balance Model Comparison. Int. J. Climatol., 31, 244272, doi:10.1002/joc.2227.

    • Search Google Scholar
    • Export Citation
  • Hamdi, R., and G. Schayes, 2008: Sensitivity study of the urban heat island intensity to urban characteristics. Int. J. Climatol., 28, 973982, doi:10.1002/joc.1598.

    • Search Google Scholar
    • Export Citation
  • Hsieh, C., G. Katul, and T.-W. Chi, 2000: An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv. Water Resour., 23, 765772, doi:10.1016/S0309-1708(99)00042-1.

    • Search Google Scholar
    • Export Citation
  • Järvi, L., C. S. B. Grimmond, and A. Christen, 2011: The Surface Urban Energy and Water Balance Scheme (SUEWS): Evaluation in Los Angeles and Vancouver. J. Hydrol., 411, 219237, doi:10.1016/j.jhydrol.2011.10.001.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., and F. Kimura, 2004: Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. J. Meteor. Soc. Japan, 82, 6780, doi:10.2151/jmsj.82.67.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329358, doi:10.1023/A:1019207923078.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., F. Chen, M. Tewari, J. Dudhia, D. O. Gill, M. G. Duda, W. Wang, and Y. Miya, 2012: Numerical simulation of urban heat island effect by the WRF model with 4-km grid increment: An inter-comparison study between the urban canopy model and slab model. J. Meteor. Soc. Japan, 90B, 3345, doi:10.2151/jmsj.2012-B03.

    • Search Google Scholar
    • Export Citation
  • Lagouarde, J.-P., M. Irvine, J.-M. Bonnefond, C. S. B. Grimmond, N. Long, T. R. Oke, J. A. Salmond, and B. Offerle, 2006: Monitoring the sensible heat flux over urban areas using large aperture scintillometry: Case study of Marseille city during the ESCOMPTE experiment. Bound.-Layer Meteor., 118, 449476, doi:10.1007/s10546-005-9001-0.

    • Search Google Scholar
    • Export Citation
  • Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterisation for mesoscale models. Bound.-Layer Meteor., 104, 261304, doi:10.1023/A:1016099921195.

    • Search Google Scholar
    • Export Citation
  • Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteor., 94, 357397, doi:10.1023/A:1002463829265.

    • Search Google Scholar
    • Export Citation
  • Nottrott, A., S. Onomura, A. Inagaki, M. Kanda, and J. Kleissl, 2011: Convective heat transfer on leeward building walls in an urban environment: Measurements in an outdoor scale model. Int. J. Heat Mass Transfer, 54, 31283138, doi:10.1016/j.ijheatmasstransfer.2011.04.020.

    • Search Google Scholar
    • Export Citation
  • Nunez, M., and T. Oke, 1977: Energy balance of an urban canyon. J. Appl. Meteor., 16, 1119, doi:10.1175/1520-0450(1977)016<0011:TEBOAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nunez, M., and T. Oke, 1980: Modeling the daytime urban surface energy balance. Geogr. Anal., 12, 373386, doi:10.1111/j.1538-4632.1980.tb00043.x.

    • Search Google Scholar
    • Export Citation
  • Offerle, B., C. S. B. Grimmond, K. Fortuniak, and W. Pawlak, 2006: Intraurban differences of surface energy fluxes in a central European city. J. Appl. Meteor. Climatol., 45, 125136, doi:10.1175/JAM2319.1.

    • Search Google Scholar
    • Export Citation
  • Offerle, B., C. S. B. Grimmond, and K. Fortuniak, 2005: Heat storage and anthropogenic heat flux in relation to the energy balance of a central European city centre. Int. J. Climatol., 25, 14051419, doi:10.1002/joc.1198.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1978: Boundary Layer Climates. Methuen, 372 pp.

  • Oke, T. R., 1988: The urban energy balance. Prog. Phys. Geogr., 12, 471508, doi:10.1177/030913338801200401.

  • Porson, A., I. N. Harman, S. I. Bohnenstengel, and S. E. Belcher, 2009: How many facets are needed to represent the surface energy balance of an urban area? Bound.-Layer Meteor., 132, 107128, doi:10.1007/s10546-009-9392-4.

    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., and Coauthors, 2005: BUBBLE—An urban boundary layer meteorology project. Theor. Appl. Climatol., 81, 231261, doi:10.1007/s00704-004-0117-9.

    • Search Google Scholar
    • Export Citation
  • Roth, M., 2007: Review of atmospheric turbulence over cities. Quart. J. Roy. Meteor. Soc., 126, 941990, doi:10.1002/qj.49712656409.

  • Ryu, Y.-H., J.-J. Baik, and S.-H. Lee, 2011: A new single-layer urban canopy model for use in mesoscale atmospheric models. J. Appl. Meteor. Climatol., 50, 17731794, doi:10.1175/2011JAMC2665.1.

    • Search Google Scholar
    • Export Citation
  • Song, T., and Y. Wang, 2012: Carbon dioxide fluxes from an urban area in Beijing. Atmos. Res., 106, 139149, doi:10.1016/j.atmosres.2011.12.001.

    • Search Google Scholar
    • Export Citation
  • Velasco, E., S. Pressley, R. Grivicke, E. Allwine, L. T. Molina, and B. Lamb, 2011: Energy balance in urban Mexico City: Observation and parameterization during the MILAGRO/MCMA-2006 field campaign. Theor. Appl. Climatol., 103, 501517, doi:10.1007/s00704-010-0314-7.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., E. Bou-Zeid, S. K. Au, and J. A. Smith, 2011a: Analyzing the sensitivity of WRF’s single-layer urban canopy model to parameter uncertainty using advanced Monte Carlo simulation. J. Appl. Meteor. Climatol., 50, 17951814, doi:10.1175/2011JAMC2685.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., E. Bou-Zeid, and J. A. Smith, 2011b: A spatially-analytical scheme for surface temperatures and conductive heat fluxes in urban canopy models. Bound.-Layer Meteor., 138, 171193, doi:10.1007/s10546-010-9552-6.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., E. Bou-Zeid, and J. A. Smith, 2013: A coupled energy transport and hydrological model for urban canopies evaluated using a wireless sensor network. Quart. J. Roy. Meteor. Soc., 139, 16431657, doi:10.1002/qj.2032.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 398 185 83
PDF Downloads 321 104 6

Influence of Subfacet Heterogeneity and Material Properties on the Urban Surface Energy Budget

Prathap Ramamurthy* Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Prathap Ramamurthy in
Current site
Google Scholar
PubMed
Close
,
Elie Bou-Zeid* Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Elie Bou-Zeid in
Current site
Google Scholar
PubMed
Close
,
James A. Smith* Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by James A. Smith in
Current site
Google Scholar
PubMed
Close
,
Zhihua Wang School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona

Search for other papers by Zhihua Wang in
Current site
Google Scholar
PubMed
Close
,
Mary L. Baeck* Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Mary L. Baeck in
Current site
Google Scholar
PubMed
Close
,
Nicanor Z. Saliendra Center for Urban Environmental Research and Education, University of Maryland Baltimore County, Baltimore, Maryland

Search for other papers by Nicanor Z. Saliendra in
Current site
Google Scholar
PubMed
Close
,
John L. Hom U.S. Department of Agriculture Forest Service, Newtown Square, Pennsylvania

Search for other papers by John L. Hom in
Current site
Google Scholar
PubMed
Close
, and
Claire Welty Center for Urban Environmental Research and Education, University of Maryland Baltimore County, Baltimore, Maryland
** Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland

Search for other papers by Claire Welty in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Urban facets—the walls, roofs, and ground in built-up terrain—are often conceptualized as homogeneous surfaces, despite the obvious variability in the composition and material properties of the urban fabric at the subfacet scale. This study focuses on understanding the influence of this subfacet heterogeneity, and the associated influence of different material properties, on the urban surface energy budget. The Princeton Urban Canopy Model, which was developed with the ability to capture subfacet variability, is evaluated at sites of various building densities and then applied to simulate the energy exchanges of each subfacet with the atmosphere over a densely built site. The analyses show that, although all impervious built surfaces convert most of the incoming energy into sensible heat rather than latent heat, sensible heat fluxes from asphalt pavements and dark rooftops are 2 times as high as those from concrete surfaces and light-colored roofs. Another important characteristic of urban areas—the shift in the peak time of sensible heat flux in comparison with rural areas—is here shown to be mainly linked to concrete’s high heat storage capacity as well as to radiative trapping in the urban canyon. The results also illustrate that the vegetated pervious soil surfaces that dot the urban landscape play a dual role: during wet periods they redistribute much of the available energy into evaporative fluxes but when moisture stressed they behave more like an impervious surface. This role reversal, along with the direct evaporation of water stored over impervious surfaces, significantly reduces the overall Bowen ratio of the urban site after rain events.

Current affiliation: U.S. Department of Agriculture Forest Service, Logan, Utah.

Corresponding author address: Elie Bou-Zeid, E414 EQUAD, Dept. of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544. E-mail: ebouzeid@princeton.edu

Abstract

Urban facets—the walls, roofs, and ground in built-up terrain—are often conceptualized as homogeneous surfaces, despite the obvious variability in the composition and material properties of the urban fabric at the subfacet scale. This study focuses on understanding the influence of this subfacet heterogeneity, and the associated influence of different material properties, on the urban surface energy budget. The Princeton Urban Canopy Model, which was developed with the ability to capture subfacet variability, is evaluated at sites of various building densities and then applied to simulate the energy exchanges of each subfacet with the atmosphere over a densely built site. The analyses show that, although all impervious built surfaces convert most of the incoming energy into sensible heat rather than latent heat, sensible heat fluxes from asphalt pavements and dark rooftops are 2 times as high as those from concrete surfaces and light-colored roofs. Another important characteristic of urban areas—the shift in the peak time of sensible heat flux in comparison with rural areas—is here shown to be mainly linked to concrete’s high heat storage capacity as well as to radiative trapping in the urban canyon. The results also illustrate that the vegetated pervious soil surfaces that dot the urban landscape play a dual role: during wet periods they redistribute much of the available energy into evaporative fluxes but when moisture stressed they behave more like an impervious surface. This role reversal, along with the direct evaporation of water stored over impervious surfaces, significantly reduces the overall Bowen ratio of the urban site after rain events.

Current affiliation: U.S. Department of Agriculture Forest Service, Logan, Utah.

Corresponding author address: Elie Bou-Zeid, E414 EQUAD, Dept. of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544. E-mail: ebouzeid@princeton.edu
Save