• Ackerman, T. P., and G. M. Stokes, 2003: The Atmospheric Radiation Measurement Program. Phys. Today, 56 (1), 3844, doi:10.1063/1.1554135.

    • Search Google Scholar
    • Export Citation
  • Anagnostou, E. N., W. F. Krajewski, and J. Smith, 1999: Uncertainty quantification of mean-areal radar-rainfall estimates. J. Atmos. Oceanic Technol., 16, 206215, doi:10.1175/1520-0426(1999)016<0206:UQOMAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Austin, P. M., 1987: Relation between measured radar reflectivity and surface rainfall. Mon. Wea. Rev., 115, 10531070, doi:10.1175/1520-0493(1987)115<1053:RBMRRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Borowska, L., D. Zrnić, A. Ryzhkov, P. Zhang, and C. Simmer, 2011: Polarimetric estimates of a 1-month accumulation of light rain with a 3-cm wavelength radar. J. Hydrometeor., 12, 10241039, doi:10.1175/2011JHM1339.1.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar. Cambridge University Press, 636 pp.

  • Bringi, V. N., T. D. Keenan, and V. Chandrasekar, 2001: Correcting C-band radar reflectivity and differential reflectivity data for rain attenuation: A self-consistent method with constraints. Trans. IEEE Geosci. and Remote Sens, 39, 19061915, doi:10.1109/36.951081.

    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., and D. J. Karoly, 2011: A regional modeling study of climate change impacts on warm-season precipitation in the central United States. J. Climate, 24, 19852002, doi:10.1175/2010JCLI3447.1.

    • Search Google Scholar
    • Export Citation
  • Caine, S., T. P. Lane, P. T. May, C. Jakob, S. T. Siems, M. J. Manton, and J. Pinto, 2013: Statistical assessment of tropical convection-permitting model simulations using a cell-tracking algorithm. Mon. Wea. Rev., 141, 557581, doi:10.1175/MWR-D-11-00274.1.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., E. Gorgucci, and G. Scarchilli, 1993: Optimization of multiparameter radar estimates of rainfall. J. Appl. Meteor., 32, 12881293, doi:10.1175/1520-0450(1993)032<1288:OOMREO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., 2003: Local random errors in tipping-bucket rain gauge measurements. J. Atmos. Oceanic Technol., 20, 752759, doi:10.1175/1520-0426(2003)20<752:LREITB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., and W. F. Krajewski, 1999: On the estimation of radar rainfall error variance. Adv. Water Resour., 22, 585595, doi:10.1016/S0309-1708(98)00043-8.

    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., W. F. Krajewski, and G. Villarini, 2007: Product-error-driven uncertainty model for probabilistic quantitative precipitation estimation with NEXRAD data. J. Hydrometeor., 8, 13251347, doi:10.1175/2007JHM814.1.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., W. A. Petersen, L. D. Carey, S. A. Rutledge, and M. A. F. da Silva Dias, 2002: Radar observations of the kinematic, microphysical, and precipitation characteristics of two MCSs in TRMM LBA. J. Geophys. Res., 107, 8077, doi:10.1029/2000JD0002642002.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., V. Chandrasekar, S. Lim, P. C. Kennedy, Y. Wang, and S. A. Rutledge, 2011: A new dual-polarization radar rainfall algorithm: Application in Colorado precipitation events. J. Atmos. Oceanic Technol., 28, 352364, doi:10.1175/2010JTECHA1488.1.

    • Search Google Scholar
    • Export Citation
  • Cunha, L. K., J. A. Smith, M. L. Baeck, and W. F. Krajewski, 2013: An early performance evaluation of the NEXRAD dual-polarization radar rainfall estimates for urban flood applications. Wea. Forecasting, 28, 14781497, doi:10.1175/WAF-D-13-00046.1.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

  • Del Genio, A. D., J. Wu, and Y. Chen, 2012: Characteristics of mesoscale organization in WRF simulations of convection during TWP-ICE. J. Climate, 25, 56665688, doi:10.1175/JCLI-D-11-00422.1.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Coauthors, 2012: Simulating the diurnal cycle of rainfall in global climate models: Resolution versus parameterization. Climate Dyn., 39, 399418, doi:10.1007/s00382-011-1127-9.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnic, 1993: Doppler Radar and Weather Observations. Academic Press, 458 pp.

  • Duchon, C., and G. R. Essenberg, 2001: Comparative rainfall observations from pit and aboveground rain gauges with and without wind shields. Water Resour. Res., 37, 32533263, doi:10.1029/2001WR000541.

    • Search Google Scholar
    • Export Citation
  • Duchon, C., C. Fiebrich, and D. Grimsley, 2014: Using high-speed photography to study undercatch in tipping-bucket rain gauges. J. Atmos. Oceanic Technol., 31, 13301336, doi:10.1175/JTECH-D-13-00169.1.

    • Search Google Scholar
    • Export Citation
  • Fiebrich, C. A., D. L. Grimsley, R. A. McPherson, K. A. Kesler, and G. R. Essenberg, 2006: The value of routine site visits in managing and maintaining quality data from the Oklahoma Mesonet. J. Atmos. Oceanic Technol., 23, 406416, doi:10.1175/JTECH1852.1.

    • Search Google Scholar
    • Export Citation
  • Fulton, R. A., J. P. Breidenbach, D.-J. Seo, D. A. Miller, and T. O’Bannon, 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13, 377395, doi:10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., and A. V. Ryzhkov, 2005: Calibration of dual-polarization radar in the presence of partial beam blockage. J. Atmos. Oceanic Technol., 22, 11561166, doi:10.1175/JTECH1766.1.

    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., and A. V. Ryzhkov, 2008: Estimation of rainfall based on the results of polarimetric echo classification. J. Appl. Meteor. Climatol., 47, 24452462, doi:10.1175/2008JAMC1753.1.

    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., S. Collis, J. Straka, A. Protat, C. Williams, and S. Krueger, 2013a: A summary of convective-core vertical velocity properties using ARM UHF wind profilers in Oklahoma. J. Appl. Meteor. Climatol., 52, 22782295, doi:10.1175/JAMC-D-12-0185.1.

    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., R. McGraw, and L. Lei, 2013b: An application of linear programming to polarimetric radar differential phase processing. J. Atmos. Oceanic Technol., 30, 17161729, doi:10.1175/JTECH-D-12-00147.1.

    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., P. Tabary, and J. Parent du Chatelet, 2007: Empirical estimation of attenuation from differential propagation phase measurements at C band. J. Appl. Meteor. Climatol., 46, 306317, doi:10.1175/JAM2464.1.

    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., S. E. Giangrande, Y. Hong, Z. Flaming, T. Schuur, and J. A. Vrugt, 2010: Impacts of polarimetric radar observations on hydrologic simulation. J. Hydrometeor., 11, 781796, doi:10.1175/2010JHM1218.1.

    • Search Google Scholar
    • Export Citation
  • Gu, J-Y., A. Ryzhkov, P. Zhang, P. Neilley, M. Knight, B. Wolf, and D.-I. Lee, 2011: Polarimetric attenuation correction in heavy rain at C band. J. Appl. Meteor. Climatol., 50, 3958, doi:10.1175/2010JAMC2258.1.

    • Search Google Scholar
    • Export Citation
  • Guy, N., X. Zeng, S. A. Rutledge, and W.-K. Tao, 2013: Comparing the convective structure and microphysics in two Sahelian mesoscale convective systems: Radar observations and CRM simulations. Mon. Wea. Rev., 141, 582601, doi:10.1175/MWR-D-12-00053.1.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement (GPM) Mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., M. I. Biggerstaff, S. A. Rutledge, and B. F. Smull, 1989: Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70, 608619, doi:10.1175/1520-0477(1989)070<0608:IODWRD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J., and V. N. Bringi, 1995: An iterative filtering technique for the analysis of copolar differential phase and dual-frequency radar measurements. J. Atmos. Oceanic Technol., 12, 643648, doi:10.1175/1520-0426(1995)012<0643:AIFTFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Matsui, A. Tokay, P. Kollias, and W.-K. Tao, 2012: Two distinct modes in one-day rainfall event during MC3E field campaign: Analyses of disdrometer observations and WRF-SBM simulation. Geophys. Res. Lett., 39, L24805, doi:10.1029/2012GL053329.

    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., and Coauthors, 2010: Midlatitude Continental Convective Clouds Experiment (MC3E) science plan. U.S. Department of Energy Doc. DOE/SC-ARM/10-004, 31 pp. [Available online at http://www.arm.gov/publications/programdocs/doe-sc-arm-10-004.pdf?id=17.]

  • Krajewski, W. F., and J. A. Smith, 2002: Radar hydrology: Rainfall estimation. Adv. Water Resour., 25, 13871394, doi:10.1016/S0309-1708(02)00062-3.

    • Search Google Scholar
    • Export Citation
  • Mather, J. H., and J. W. Voyles, 2013: The ARM Climate Research Facility: A review of structure and capabilities. Bull. Amer. Meteor. Soc., 94, 377392, doi:10.1175/BAMS-D-11-00218.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., D. E. Kingsmill, B. E. Martner, and F. M. Ralph, 2005: The utility of X-band polarimetric radar for quantitative estimates of rainfall parameters. J. Hydrometeor., 6, 248262, doi:10.1175/JHM424.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. Cifelli, P. C. Kennedy, S. W. Nesbitt, S. A. Rutledge, V. N. Bringi, and B. E. Martner, 2006: A comparative study of rainfall retrievals based on specific differential phase shifts at X- and S-band radar frequencies. J. Atmos. Oceanic Technol., 23, 952963, doi:10.1175/JTECH1887.1.

    • Search Google Scholar
    • Export Citation
  • Matsui, T., D. Mocko, M.-I. Lee, W.-K. Tao, M. J. Suarez, and R. A. Pielke Sr., 2010: Ten-year climatology of summertime diurnal rainfall rate over the conterminous U.S. Geophys. Res. Lett., 37, L13807, doi:10.1029/2010GL044139.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2006: A multimoment bulk microphysics parameterization. Part III: Control simulation of a hailstorm. J. Atmos. Sci., 63, 31143136, doi:10.1175/JAS3816.1.

    • Search Google Scholar
    • Export Citation
  • Otto, T., and H. W. J. Ruschenberg, 2011: Estimation of specific differential phase and differential backscatter phase from polarimetric weather radar measurements of rain. IEEE Geosci. Remote Sens. Lett., 8, 988992, doi:10.1109/LGRS.2011.2145354.

    • Search Google Scholar
    • Export Citation
  • Park, S.-G., V. N. Bringi, V. Chandrasekar, M. Maki, and K. Iwanami, 2005a: Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part I: Theoretical and empirical basis. J. Atmos. Oceanic Technol., 22, 16211632, doi:10.1175/JTECH1803.1.

    • Search Google Scholar
    • Export Citation
  • Park, S.-G., M. Maki, K. Iwanami, V. N. Bringi, and V. Chandrasekar, 2005b: Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part II: Evaluation and application. J. Atmos. Oceanic Technol., 22, 16331655, doi:10.1175/JTECH1804.1.

    • Search Google Scholar
    • Export Citation
  • Pepler, A. S., and P. T. May, 2012: A robust error-based rain estimation method for polarimetric radar. Part II: Case study. J. Appl. Meteor. Climatol., 51, 17021713, doi:10.1175/JAMC-D-11-0159.1.

    • Search Google Scholar
    • Export Citation
  • Rodríguez-Iturbe, I., and J. M. Mejía, 1974: The design of rainfall networks in time and space. Water Resour. Res., 10, 713728, doi:10.1029/WR010i004p00713.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., 2007: The impact of beam broadening on the quality of radar polarimetric data. J. Atmos. Oceanic Technol., 24, 729744, doi:10.1175/JTECH2003.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. Zrnic, 1998: Beamwidth effects on the differential phase measurements of rain. J. Atmos. Oceanic Technol., 15, 624634, doi:10.1175/1520-0426(1998)015<0624:BEOTDP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., S. E. Giangrande, V. M. Melnikov, and T. J. Schuur, 2005a: Calibration issues of dual-polarization radar measurements. J. Atmos. Oceanic Technol., 22, 11381155, doi:10.1175/JTECH1772.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., S. E. Giangrande, and T. J. Schuur, 2005b: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44, 502515, doi:10.1175/JAM2213.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnić, 2005c: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, doi:10.1175/BAMS-86-6-809.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. Diederich, P. Zhang, and C. Simmer, 2014: Potential utilization of specific attenuation for rainfall estimation, mitigation of partial beam blockage, and radar networking. J. Atmos. Oceanic Technol., 31, 599619, doi:10.1175/JTECH-D-13-00038.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze, and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM precipitation radar. J. Atmos. Sci., 61, 13411358, doi:10.1175/1520-0469(2004)061<1341:TTDRTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seo, B.-C., and W. F. Krajewski, 2010: Scale dependence of radar rainfall uncertainty: Initial evaluation of NEXRAD’s new super-resolution data for hydrologic applications. J. Hydrometeor., 11, 11911198, doi:10.1175/2010JHM1265.1.

    • Search Google Scholar
    • Export Citation
  • Shafer, M. A., C. A. Fiebrich, D. Arndt, S. E. Fredrickson, and T. W. Hughes, 2000: Quality assurance procedures in the Oklahoma Mesonetwork. J. Atmos. Oceanic Technol., 17, 474494, doi:10.1175/1520-0426(2000)017<0474:QAPITO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sieck, L. C., S. J. Burges, and M. Steiner, 2007: Challenges in obtaining reliable measurements of point rainfall. Water Resour. Res., 43, W01420, doi:10.1029/2005WR004519.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor, and H. L. Miller Jr., Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Tabary, P., A. Boumahmoud, H. Andrieu, R. Thompson, A. Illingworth, E. LeBouar, and J. Testud, 2011: Evaluation of two “integrated” polarimetric quantitative precipitation estimation (QPE) algorithms at C band. J. Hydrol., 405, 248260, doi:10.1016/j.jhydrol.2011.05.021.

    • Search Google Scholar
    • Export Citation
  • Testud, J., E. Le Bouar, E. Obligis, and M. Ali-Mehenni, 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17, 332356, doi:10.1175/1520-0426(2000)017<0332:TRPAAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., V. N. Bringi, L. D. Carey, P. Gatlin, E. Schultz, and W. A. Petersen, 2012: estimating the accuracy of polarimetric radar–based retrievals of drop-size distribution parameters and rain rate: An application of error variance separation using radar-derived spatial correlations. J. Hydrometeor., 13, 10661079, doi:10.1175/JHM-D-11-070.1.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., P. G. Bashor, and V. L. McDowell, 2010: Comparison of rain gauge measurements in the mid-Atlantic region. J. Hydrometeor., 11, 553565, doi:10.1175/2009JHM1137.1.

    • Search Google Scholar
    • Export Citation
  • Varble, A., and Coauthors, 2011: Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations: Precipitation and cloud structure. J. Geophys. Res., 116, D12206, doi:10.1029/2010JD015180.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., P. V. Mandapaka, W. F. Krajewski, and R. J. Moore, 2008: Rainfall and sampling errors: A rain gauge perspective. J. Geophys. Res., 113, D11102, doi:10.1029/2007JD009214.

    • Search Google Scholar
    • Export Citation
  • Vulpiani, G., S. Giangrande, and F. S. Marzano, 2009: Rainfall estimation from polarimetric S-band radar measurements: Validation of a neural network approach. J. Appl. Meteor. Climatol., 48, 20222036, doi:10.1175/2009JAMC2172.1.

    • Search Google Scholar
    • Export Citation
  • Vulpiani, G., M. Montopoli, L. D. Passeri, A. G. Gioia, P. Giordano, and F. S. Marzano, 2012: On the use of dual-polarized C-band radar for operational rainfall retrieval in mountainous areas. J. Appl. Meteor. Climatol., 51, 405425, doi:10.1175/JAMC-D-10-05024.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and V. Chandrasekar, 2009: Algorithm for estimation of the specific differential phase. J. Atmos. Oceanic Technol., 26, 25652578, doi:10.1175/2009JTECHA1358.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and V. Chandrasekar, 2010: Quantitative precipitation estimation in the CASA X-band dual-polarization radar network. J. Atmos. Oceanic Technol., 27, 16651676, doi:10.1175/2010JTECHA1419.1.

    • Search Google Scholar
    • Export Citation
  • Wapler, K., T. P. Lane, P. T. May, C. Jakob, M. J. Manton, and S. T. Siems, 2010: Cloud-system-resolving model simulations of tropical cloud systems observed during the Tropical Warm Pool-International Cloud Experiment. Mon. Wea. Rev., 138, 5573, doi:10.1175/2009MWR2993.1.

    • Search Google Scholar
    • Export Citation
  • Whiton, R. C., P. L. Smith, S. G. Bigler, K. E. Wilk, and A. C. Harbuck, 1998: History of operational use of weather radar by U.S. weather services. Part II: Development of operational Doppler weather radars. Wea. Forecasting, 13, 244252, doi:10.1175/1520-0434(1998)013<0244:HOOUOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Williams, C. R., 2012: Vertical air motion retrieved from dual-frequency profiler observations. J. Atmos. Oceanic Technol., 29, 14711480, doi:10.1175/JTECH-D-11-00176.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and E. A. Brandes, 1979: Radar measurement of rainfall—A summary. Bull. Amer. Meteor. Soc., 60, 10481058, doi:10.1175/1520-0477(1979)060<1048:RMORS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, S. C., R. T. Cederwall, and M. Zhang, 2004: Developing long-term single-column model/cloud system–resolving model forcing data using numerical weather prediction products constrained by surface and top of the atmosphere observations. J. Geophys. Res., 109, D01104, doi:10.1029/2003JD004045.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I. I., 1973: Errors and fluctuations of raingauge estimates of areal rainfall. J. Hydrol., 18, 243255, doi:10.1016/0022-1694(73)90050-4.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 237 99 8
PDF Downloads 178 63 1

Precipitation Estimation from the ARM Distributed Radar Network during the MC3E Campaign

Scott E. GiangrandeAtmospheric Sciences Division, Brookhaven National Laboratory, Upton, New York

Search for other papers by Scott E. Giangrande in
Current site
Google Scholar
PubMed
Close
,
Scott CollisEnvironmental Science Division, Argonne National Laboratory, Argonne, Illinois

Search for other papers by Scott Collis in
Current site
Google Scholar
PubMed
Close
,
Adam K. TheisenAtmospheric Radiation Measurement Program Data Quality Office, Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Adam K. Theisen in
Current site
Google Scholar
PubMed
Close
, and
Ali TokayUniversity of Maryland, Baltimore County, Baltimore, and NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Ali Tokay in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study presents radar-based precipitation estimates collected during the 2-month U.S. Department of Energy Atmospheric Radiation Measurement Program (ARM)–NASA Midlatitude Continental Convective Clouds Experiment (MC3E). Emphasis is on the usefulness of radar observations from the C-band and X-band scanning ARM precipitation radars (CSAPR and XSAPR, respectively) for rainfall estimation products to distances within 100 km of the Lamont, Oklahoma, ARM facility. The study utilizes a dense collection of collocated ARM, NASA Global Precipitation Measurement, and nearby surface Oklahoma Mesonet gauge records to evaluate radar-based hourly rainfall products and campaign-optimized methods over individual gauges and for areal rainfall characterizations. Rainfall products are also evaluated against the performance of a regional NWS Weather Surveillance Radar-1988 Doppler (WSR-88D) S-band dual-polarization radar product. Results indicate that the CSAPR system may achieve similar point– and areal–gauge bias and root-mean-square (RMS) error performance to a WSR-88D reference for the variety of MC3E deep convective events sampled. The best campaign rainfall performance was achieved when using radar relations capitalizing on estimates of the specific attenuation from the CSAPR system. The XSAPRs demonstrate limited capabilities, having modest success in comparison with the WSR-88D reference for hourly rainfall accumulations that are under 10 mm. All rainfall estimation methods exhibit a reduction by a factor of 1.5–2.5 in RMS errors for areal accumulations over a 15-km2 NASA dense gauge network, with the smallest errors typically associated with dual-polarization radar methods.

Corresponding author address: Scott Giangrande, Atmospheric Sciences Division, Brookhaven National Laboratory, Bldg. 490D, Bell Ave., Upton, NY 11973. E-mail: scott.giangrande@bnl.gov

Abstract

This study presents radar-based precipitation estimates collected during the 2-month U.S. Department of Energy Atmospheric Radiation Measurement Program (ARM)–NASA Midlatitude Continental Convective Clouds Experiment (MC3E). Emphasis is on the usefulness of radar observations from the C-band and X-band scanning ARM precipitation radars (CSAPR and XSAPR, respectively) for rainfall estimation products to distances within 100 km of the Lamont, Oklahoma, ARM facility. The study utilizes a dense collection of collocated ARM, NASA Global Precipitation Measurement, and nearby surface Oklahoma Mesonet gauge records to evaluate radar-based hourly rainfall products and campaign-optimized methods over individual gauges and for areal rainfall characterizations. Rainfall products are also evaluated against the performance of a regional NWS Weather Surveillance Radar-1988 Doppler (WSR-88D) S-band dual-polarization radar product. Results indicate that the CSAPR system may achieve similar point– and areal–gauge bias and root-mean-square (RMS) error performance to a WSR-88D reference for the variety of MC3E deep convective events sampled. The best campaign rainfall performance was achieved when using radar relations capitalizing on estimates of the specific attenuation from the CSAPR system. The XSAPRs demonstrate limited capabilities, having modest success in comparison with the WSR-88D reference for hourly rainfall accumulations that are under 10 mm. All rainfall estimation methods exhibit a reduction by a factor of 1.5–2.5 in RMS errors for areal accumulations over a 15-km2 NASA dense gauge network, with the smallest errors typically associated with dual-polarization radar methods.

Corresponding author address: Scott Giangrande, Atmospheric Sciences Division, Brookhaven National Laboratory, Bldg. 490D, Bell Ave., Upton, NY 11973. E-mail: scott.giangrande@bnl.gov
Save