• Auligné, T., A. Lorenc, Y. Michel, T. Montmerle, A. Jones, M. Hu, and J. Dudhia, 2011: Toward a new cloud analysis and prediction system. Bull. Amer. Meteor. Soc., 92, 207210, doi:10.1175/2010BAMS2978.1.

    • Search Google Scholar
    • Export Citation
  • Austin, R. T., A. J. Heymsfeld, and G. L. Stephens, 2009: Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature. J. Geophys. Res., 114, D00A23, doi:10.1029/2008JD010049.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., M. P. Jerg, T. Wehr, S. Kato, D. P. Donovan, and R. J. Hogan, 2011: A 3D cloud-construction algorithm for the EarthCARE satellite mission. Quart. J. Roy. Meteor. Soc., 137, 10421058, doi:10.1002/qj.824.

    • Search Google Scholar
    • Export Citation
  • Bernstein, B. C., and Coauthors, 2005: Current icing potential: Algorithm description and comparison with aircraft observations. J. Appl. Meteor., 44, 969986, doi:10.1175/JAM2246.1.

    • Search Google Scholar
    • Export Citation
  • Brown, B. G., R. Bullock, J. Halley Gotway, D. Ahijevych, C. Davis, E. Gilleland, and L. Holland, 2007: Application of the MODE object-based verification tool for the evaluation of model precipitation fields. 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., 10A.2. [Available online at https://ams.confex.com/ams/pdfpapers/124856.pdf.]

  • Carmichael, B., and D. J. Pace, 2008: The single authoritative source for weather information. 13th Conf. on Aviation, Range and Aerospace Meteorology, New Orleans, LA, Amer. Meteor. Soc., J6.4. [Available online at https://ams.confex.com/ams/88Annual/techprogram/paper_128615.htm.]

  • Casadevall, T. J., 1994: The 1989–1990 eruption of Redoubt Volcano, Alaska: Impacts on aircraft operations. J. Volcanol. Geotherm. Res., 62, 301316, doi:10.1016/0377-0273(94)90038-8.

    • Search Google Scholar
    • Export Citation
  • Casati, B., G. Ross, and D. Stephenson, 2004: A new intensity-scale approach for the verification of spatial precipitation forecasts. Meteor. Appl., 11, 141154, doi:10.1017/S1350482704001239.

    • Search Google Scholar
    • Export Citation
  • Cober, S. G., and G. A. Isaac, 2012: Characterization of aircraft icing environments with supercooled large drops for application to commercial aircraft certification. J. Appl. Meteor. Climatol., 51, 265284, doi:10.1175/JAMC-D-11-022.1.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., and K. Sassen, 2001: Retrieval of cirrus cloud radiative and backscattering properties using combined lidar and infrared radiometer (LIRAD) measurements. J. Atmos. Oceanic Technol., 18, 16581673, doi:10.1175/1520-0426(2001)018<1658:ROCCRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Conover, J. H., 1964: The identification and significance of orographically induced clouds observed by TIROS satellites. J. Appl. Meteor., 3, 226234, doi:10.1175/1520-0450(1964)003<0226:TIASOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Curry, K., R. Hardwick, D. Pace, and K. Johnston, 2008: U.S. government environmental data cube (4D cube) harmonization. 13th Conf. on Aviation, Range and Aerospace Meteorology, New Orleans, LA, Amer. Meteor. Soc., J5.5. [Available online at https://ams.confex.com/ams/pdfpapers/128890.pdf.]

  • Davis, C., B. Brown, and R. Bullock, 2006: Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134, 17721784, doi:10.1175/MWR3145.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C., and Coauthors, 2008: Prediction of landfalling hurricanes with the Advanced Hurricane WRF Model. Mon. Wea. Rev., 136, 19902005, doi:10.1175/2007MWR2085.1.

    • Search Google Scholar
    • Export Citation
  • ESA, 2001: The Five Candidate Earth Explorer Core Missions: EarthCARE—Earth Clouds, Aerosols and Radiation Explorer. European Space Agency Rep. ESA SP-1257 (1), 130 pp. [Available online at http://esamultimedia.esa.int/docs/sp_1257_1_earthcaresc.pdf.]

  • FAA, 2013: NextGen implementation plan. Federal Aviation Administration Office of NextGen Doc., 94 pp. [Available online at www.faa.gov/nextgen/implementation/media/NextGen_Implementation_Plan_2013.pdf.]

  • Halley Gotway, J., and Coauthors, 2013: Model Evaluation Tools version 4.1 (METv4.1): User’s guide 4.1. Developmental Testbed Center Rep., 226 pp. [Available online at http://www.dtcenter.org/met/users/docs/users_guide/MET_Users_Guide_v4.1.pdf.]

  • Haynes, J. M., R. T. Marchand, Z. Luo, A. Bodas-Salcedo, and G. L. Stephens, 2007: A multipurpose simulation package: QuickBeam. Bull. Amer. Meteor. Soc., 88, 17231727, doi:10.1175/BAMS-88-11-1723.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., T. S. L’Ecuyer, G. L. Stephens, S. D. Miller, C. Mitrescu, N. B. Wood, and S. Tanelli, 2009: Rainfall retrieval over the ocean with spaceborne W-band radar. J. Geophys. Res., 114, D00A22, doi:10.1029/2008JD009973.

    • Search Google Scholar
    • Export Citation
  • Holland, L., J. Halley Gotway, B. Brown, R. Bullock, E. Gilleland, and D. Ahijevych, 2007: The Model Evaluation Tool. 22nd Conf. on Weather Analysis and Forecasting, Park City, UT, Amer. Meteor. Soc., 10A.1. [Available online at https://ams.confex.com/ams/pdfpapers/124840.pdf.]

  • Hu, Y., and Coauthors, 2009: CALIPSO/CALIOP cloud phase discrimination algorithm. J. Atmos. Oceanic Technol., 26, 22932309, doi:10.1175/2009JTECHA1280.1.

    • Search Google Scholar
    • Export Citation
  • Kaplan, M. L., A. W. Huffman, K. M. Lux, J. J. Charney, A. J. Riordan, and Y.-L. Lin, 2005: Characterizing the severe turbulence environments associated with commercial aviation accidents. Part 1: A 44-case study synoptic observational analysis. Meteor. Atmos. Phys., 88, 129152, doi:10.1007/s00703-004-0080-0.

    • Search Google Scholar
    • Export Citation
  • Klein, S., and C. Jakob, 1999: Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon. Wea. Rev., 127, 25142531, doi:10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., H. Masunaga, and P. Bauer, 2007: A next-generation microwave rainfall retrieval algorithm for use by TRMM and GPM. Measuring Precipitation from Space: EURAINSAT and the Future, V. Levizzani, P. Bauer, and F. J. Turk, Eds., Advances in Global Change Research, Vol. 28, Springer, 235–252.

  • Lau, N.-C., and M. W. Crane, 1995: A satellite view of the synoptic-scale organization of cloud properties in midlatitude and tropical circulation systems. Mon. Wea. Rev., 123, 19842006, doi:10.1175/1520-0493(1995)123<1984:ASVOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. W. Crane, 1997: Comparing satellite and surface observations of cloud patterns in synoptic-scale circulation systems. Mon. Wea. Rev., 125, 31723189, doi:10.1175/1520-0493(1997)125<3172:CSASOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and J. H. Jiang, 2010: Touring the atmosphere aboard the A-Train. Phys. Today, 63 (7), 3641, doi:10.1063/1.3463626.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., Q. Zhang, M. Vaughn, R. Marchand, G. Stephens, C. Trepte, and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged CloudSat and CALIPSO data. J. Geophys. Res., 114, D00A26, doi:10.1029/2007JD009755.

    • Search Google Scholar
    • Export Citation
  • Marchand, R., G. G. Mace, T. Ackerman, and G. Stephens, 2008: Hydrometeor detection using CloudSat—An Earth-orbiting 94-GHz cloud radar. J. Atmos. Oceanic Technol., 25, 519533, doi:10.1175/2007JTECHA1006.1.

    • Search Google Scholar
    • Export Citation
  • Mason, J., J. W. Strapp, and P. Chow, 2006: Ice particle threat to engines in flight. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA, 2006-206. [Available online at http://arc.aiaa.org/doi/pdf/10.2514/6.2006-206.]

  • Miller, S. D., G. L. Stephens, and A. Beljaars, 1999: A validation survey of the ECMWF prognostic cloud scheme using LITE. Geophys. Res. Lett., 26, 14171420, doi:10.1029/1999GL900263.

    • Search Google Scholar
    • Export Citation
  • Miller, S. D., and Coauthors, 2014: Estimating three-dimensional cloud structure via statistically blended satellite observations. J. Appl. Meteor. Climatol., 53, 437455, doi:10.1175/JAMC-D-13-070.1.

    • Search Google Scholar
    • Export Citation
  • Mitrescu, C., S. D. Miller, J. Haynes, T. S. L’Ecuyer, and J. Turk, 2010: CloudSat precipitation profiling algorithm: Model description. J. Appl. Meteor., 49, 9911003, doi:10.1175/2009JAMC2181.1.

    • Search Google Scholar
    • Export Citation
  • Posselt, D., G. L. Stephens, and M. Miller, 2008: Cloudsat adding a new dimension to a classical view of extratropical cyclones. Bull. Amer. Meteor. Soc., 89, 599609, doi:10.1175/BAMS-89-5-599.

    • Search Google Scholar
    • Export Citation
  • Rahmat-Samii, Y., J. Huang, B. Lopez, M. Lou, E. Im, S. L. Durden, and K. Bahadori, 2005: Advanced precipitation radar antenna: Array-fed offset membrane cylindrical reflector antenna. IEEE Antennas Propag., 53, 25032151, doi:10.1109/TAP.2005.852599.

    • Search Google Scholar
    • Export Citation
  • Reynolds, D. W., D. A. Clark, F. W. Wilson, and L. Cook, 2012: Forecast-based decision support for San Francisco International Airport: A NextGen prototype system that improves operations during summer stratus season. Bull. Amer. Meteor. Soc., 93, 15031518, doi:10.1175/BAMS-D-11-00038.1.

    • Search Google Scholar
    • Export Citation
  • Sadowy, G. A., A. C. Berkun, W. Chun, E. Im, and S. L. Durden, 2003: Development of an advanced airborne precipitation radar. Microwave J., 46, 8498.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, doi:10.1175/BAMS-83-12-1771.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1993: Representations of clouds in large-scale models. Mon. Wea. Rev., 121, 30403061, doi:10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Uhlenbrock, N. L., K. M. Bedka, W. F. Feltz, and S. A. Ackerman, 2007: Mountain wave signatures in MODIS 6.7-μm imagery and their relation to pilot reports of turbulence. Wea. Forecasting, 22, 662670, doi:10.1175/WAF1007.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Winker, D. M., R. H. Couch, and M. P. McCormick, 1996: An overview of LITE: NASA’s Lidar In-Space Technology Experiment. Proc. IEEE, 84, 164180, doi:10.1109/5.482227.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., and Coauthors, 2010: The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91, 12111229, doi:10.1175/2010BAMS3009.1.

    • Search Google Scholar
    • Export Citation
  • World Climate Research Programme, 1994: Cloud–radiation interactions and their parameterization in climate models. WCRP Rep. WCRP-86, WMO Tech. Doc. WMO/TD 648, 147 pp.

  • Yuter, S. E., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, doi:10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 152 76 12
PDF Downloads 99 27 5

Model-Evaluation Tools for Three-Dimensional Cloud Verification via Spaceborne Active Sensors

Steven D. Miller* Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Steven D. Miller in
Current site
Google Scholar
PubMed
Close
,
Courtney E. Weeks Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Courtney E. Weeks in
Current site
Google Scholar
PubMed
Close
,
Randy G. Bullock Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Randy G. Bullock in
Current site
Google Scholar
PubMed
Close
,
John M. Forsythe* Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by John M. Forsythe in
Current site
Google Scholar
PubMed
Close
,
Paul A. Kucera Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Paul A. Kucera in
Current site
Google Scholar
PubMed
Close
,
Barbara G. Brown Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Barbara G. Brown in
Current site
Google Scholar
PubMed
Close
,
Cory A. Wolff Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Cory A. Wolff in
Current site
Google Scholar
PubMed
Close
,
Philip T. Partain* Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Philip T. Partain in
Current site
Google Scholar
PubMed
Close
,
Andrew S. Jones* Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Andrew S. Jones in
Current site
Google Scholar
PubMed
Close
, and
David B. Johnson Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by David B. Johnson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Clouds pose many operational hazards to the aviation community in terms of ceilings and visibility, turbulence, and aircraft icing. Realistic descriptions of the three-dimensional (3D) distribution and temporal evolution of clouds in numerical weather prediction models used for flight planning and routing are therefore of central importance. The introduction of satellite-based cloud radar (CloudSat) and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) sensors to the National Aeronautics and Space Administration A-Train is timely in light of these needs but requires a new paradigm of model-evaluation tools that are capable of exploiting the vertical-profile information. Early results from the National Center for Atmospheric Research Model Evaluation Toolkit (MET), augmented to work with the emergent satellite-based active sensor observations, are presented here. Existing horizontal-plane statistical evaluation techniques have been adapted to operate on observations in the vertical plane and have been extended to 3D object evaluations, leveraging blended datasets from the active and passive A-Train sensors. Case studies of organized synoptic-scale and mesoscale distributed cloud systems are presented to illustrate the multiscale utility of the MET tools. Definition of objects on the basis of radar-reflectivity thresholds was found to be strongly dependent on the model’s ability to resolve details of the cloud’s internal hydrometeor distribution. Contoured-frequency-by-altitude diagrams provide a useful mechanism for evaluating the simulated and observed 3D distributions for regional domains. The expanded MET provides a new dimension to model evaluation and positions the community to better exploit active-sensor satellite observing systems that are slated for launch in the near future.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Steven D. Miller, Cooperative Institute for Research in the Atmosphere, Colorado State University, 1375 Campus Delivery, Fort Collins, CO 80523-1375. E-mail: steven.miller@colostate.edu

Abstract

Clouds pose many operational hazards to the aviation community in terms of ceilings and visibility, turbulence, and aircraft icing. Realistic descriptions of the three-dimensional (3D) distribution and temporal evolution of clouds in numerical weather prediction models used for flight planning and routing are therefore of central importance. The introduction of satellite-based cloud radar (CloudSat) and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) sensors to the National Aeronautics and Space Administration A-Train is timely in light of these needs but requires a new paradigm of model-evaluation tools that are capable of exploiting the vertical-profile information. Early results from the National Center for Atmospheric Research Model Evaluation Toolkit (MET), augmented to work with the emergent satellite-based active sensor observations, are presented here. Existing horizontal-plane statistical evaluation techniques have been adapted to operate on observations in the vertical plane and have been extended to 3D object evaluations, leveraging blended datasets from the active and passive A-Train sensors. Case studies of organized synoptic-scale and mesoscale distributed cloud systems are presented to illustrate the multiscale utility of the MET tools. Definition of objects on the basis of radar-reflectivity thresholds was found to be strongly dependent on the model’s ability to resolve details of the cloud’s internal hydrometeor distribution. Contoured-frequency-by-altitude diagrams provide a useful mechanism for evaluating the simulated and observed 3D distributions for regional domains. The expanded MET provides a new dimension to model evaluation and positions the community to better exploit active-sensor satellite observing systems that are slated for launch in the near future.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Steven D. Miller, Cooperative Institute for Research in the Atmosphere, Colorado State University, 1375 Campus Delivery, Fort Collins, CO 80523-1375. E-mail: steven.miller@colostate.edu
Save