• Acevedo, O. C., and D. R. Fitzjarrald, 2001: The early evening transition: Temporal and spatial variability. J. Atmos. Sci., 58, 26502667, doi:10.1175/1520-0469(2001)058<2650:TEESLT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Acevedo, O. C., and D. R. Fitzjarrald, 2003: In the core of the night—Effects of intermittent mixing on a horizontally heterogeneous surface. Bound.-Layer Meteor., 106, 133, doi:10.1023/A:1020824109575.

    • Search Google Scholar
    • Export Citation
  • Acevedo, O. C., O. L. L. Moraes, G. A. Degrazia, and L. E. Medeiros, 2006: Intermittency and the exchange of scalars in the nocturnal surface layer. Bound.-Layer Meteor., 119, 4155, doi:10.1007/s10546-005-9019-3.

    • Search Google Scholar
    • Export Citation
  • Ballard, S. P., B. W. Golding, and R. N. B. Smith, 1991: Mesoscale model experimental forecasts of the Haar of northeast Scotland. Mon. Wea. Rev., 119, 21072123, doi:10.1175/1520-0493(1991)119<2107:MMEFOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A., 1962: The vertical distribution of wind and turbulent exchange in neutral atmosphere. J. Geophys. Res., 67, 30953090, doi:10.1029/JZ067i008p03095.

    • Search Google Scholar
    • Export Citation
  • Delage, Y., 1997: Parameterising sub-grid scale vertical transport in atmospheric models under statically stable conditions. Bound.-Layer Meteor., 82, 2348, doi:10.1023/A:1000132524077.

    • Search Google Scholar
    • Export Citation
  • Doran, J. C., 2004: Characteristics of intermittent turbulent temperature fluxes in stable conditions. Bound.-Layer Meteor., 112, 241255, doi:10.1023/B:BOUN.0000027907.06649.d0.

    • Search Google Scholar
    • Export Citation
  • Fernando, H. J. S., and J. C. Weil, 2010: Whither the stable boundary layer? A shift in the research agenda. Bull. Amer. Meteor. Soc., 91, 14751484, doi:10.1175/2010BAMS2770.1.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., and R. M. Wakimoto, 1982: Effects of miso- and mesoscale obstructions on PAM winds obtained during the Project NIMROD. J. Appl. Meteor., 21, 840858, doi:10.1175/1520-0450(1982)021<0840:EOMAMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Howard, L. N., 1961: Note on a paper of John W. Miles. J. Fluid Mech., 10, 509512, doi:10.1017/S0022112061000317.

  • Howell, J. F., 1995: Identifying sudden changes in data. Mon. Wea. Rev., 123, 12071212, doi:10.1175/1520-0493(1995)123<1207:ISCID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Howell, J. F., and J. Sun, 1999: Surface-layer fluxes in stable conditions. Bound.-Layer Meteor., 90, 495520, doi:10.1023/A:1001788515355.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, doi:10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • King, J. C., W. M. Connolley, and S. H. Derbyshire, 2001: Sensitivity of modelled Antarctic climate to surface and boundary-layer flux parameterizations. Quart. J. Roy. Meteor. Soc., 127, 779794, doi:10.1002/qj.49712757304.

    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., J. Walters, and E. W. McCaul, 2000: Doppler profiler observations of Hurricane Georges at landfall. Geophys. Res. Lett., 27, 33613364, doi:10.1029/1999GL011260.

    • Search Google Scholar
    • Export Citation
  • Kondo, J., O. Kanechika, and N. Yasuda, 1978: Heat and momentum transfer under strong stability in the atmospheric surface layer. J. Atmos. Sci., 35, 10121021, doi:10.1175/1520-0469(1978)035<1012:HAMTUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, H., G. Peters, and T. Foken, 2001: New equations for sonic temperature variance and buoyancy heat flux with an omnidirectional sonic anemometer. Bound.-Layer Meteor., 100, 459468, doi:10.1023/A:1019207031397.

    • Search Google Scholar
    • Export Citation
  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202, doi:10.1007/BF00117978.

    • Search Google Scholar
    • Export Citation
  • Louis, J. F., M. Tiedtke, and J. F. Geleyn, 1981: A short history of the operational PBL parameterization at ECMWF. Preprints, Workshop on Planetary Boundary Layer Parameterization, Reading, United Kingdom, ECMWF, 5979. [Available online at http://old.ecmwf.int/publications/library/ecpublications/_pdf/workshop/1981/PBL/ws_pbl_louis.pdf.]

  • Luhar, A. K., P. J. Hurley, and K. N. Rayner, 2009: Modelling near-surface low winds over land under stable conditions: Sensitivity tests, flux-gradient relationships, and stability parameters. Bound.-Layer Meteor., 130, 249274, doi:10.1007/s10546-008-9341-7.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1987: Grid-averaged surface fluxes. Mon. Wea. Rev., 115, 15501560, doi:10.1175/1520-0493(1987)115<1550:GASF>2.0.CO;2.

  • Mahrt, L., 1999: Stratified atmospheric boundary layers. Bound.-Layer Meteor., 90, 375396, doi:10.1023/A:1001765727956.

  • Mahrt, L., 2014: Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech., 46, 2345, doi:10.1146/annurev-fluid-010313-141354.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and D. Vickers, 2002: Contrasting vertical structures of nocturnal boundary layer. Bound.-Layer Meteor., 105, 351363, doi:10.1023/A:1019964720989.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and D. Vickers, 2003: Formulation of turbulent fluxes in the stable boundary layer. J. Atmos. Sci., 60, 25382548, doi:10.1175/1520-0469(2003)060<2538:FOTFIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCabe, A., and A. R. Brown, 2007: The role of surface heterogeneity in modeling the stable boundary layer. Bound.-Layer Meteor., 122, 517534, doi:10.1007/s10546-006-9119-8.

    • Search Google Scholar
    • Export Citation
  • Medeiros, L. E., 2011: Origin and maintenance of the stable boundary layer in a patchy landscape. Ph.D. thesis, University at Albany, State University of New York, 191 pp. [Available online at ftp://boojum.asrc.cestm.albany.edu/pub/Medeiros_PhD/Medeiros_Phd_UAlbany-2011.pdf.]

  • Miles, J. W., 1961: On the stability of heterogeneous shear flows. J. Fluid Mech., 10, 496508, doi:10.1017/S0022112061000305.

  • Ohya, Y., R. Nakamura, and T. Uchida, 2008: Intermittent bursting of turbulence in a stable boundary layer with low level jet. Bound.-Layer Meteor., 126, 349363, doi:10.1007/s10546-007-9245-y.

    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., and S. P. Burns, 2003: An evaluation of bulk Ri-based surface layer flux formulas for stable and very stable conditions with intermittent turbulence. J. Atmos. Sci., 60, 25232537, doi:10.1175/1520-0469(2003)060<2523:AEOBRS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Salmond, J. A., and I. G. McKendry, 2002: Secondary ozone maxima in very stable nocturnal layer: Observations from the Lower Fraser Valley, BC. Atmos. Environ., 36, 57715782, doi:10.1016/S1352-2310(02)00698-2.

    • Search Google Scholar
    • Export Citation
  • Steeneveld, G. J., A. A. M. Holtslag, C. Nappo, B. J. H. Van de Wiel, and L. Mahrt, 2008: Exploring the possible role of small scale terrain drag on stable boundary layers over land. J. Appl. Meteor. Climatol., 47, 25182530, doi:10.1175/2008JAMC1816.1.

    • Search Google Scholar
    • Export Citation
  • Svensson, G., and A. A. M. Holtslag, 2009: Analysis of model results for the turning of the wind and related momentum fluxes in the stable boundary layer. Bound.-Layer Meteor., 132, 261277, doi:10.1007/s10546-009-9395-1.

    • Search Google Scholar
    • Export Citation
  • Viterbo, P., A. Beljaars, J. F. Mahfouf, and J. Teixeira, 1999: The representation of soil moisture freezing and its impact on the stable boundary layer. Quart. J. Roy. Meteor. Soc., 125, 24012426, doi:10.1002/qj.49712555904.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2010: Turbulence in the Atmosphere. Cambridge University Press, 393 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 200 107 17
PDF Downloads 135 70 12

Stable Boundary Layer in Complex Terrain. Part I: Linking Fluxes and Intermittency to an Average Stability Index

Luiz E. MedeirosAtmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York

Search for other papers by Luiz E. Medeiros in
Current site
Google Scholar
PubMed
Close
and
David R. FitzjarraldAtmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York

Search for other papers by David R. Fitzjarrald in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Average heat and momentum fluxes observed by a network of surface stations during the Hudson Valley Ambient Meteorology Study (HVAMS) were found as functions of a spatially representative bulk Richardson number Ribr. Preferential sites were identified for the occurrence of strong turbulence under mesoscale stability conditions common to all stations. Locally sensed turbulence intermittency depends on the mesoscale flow stability. Nearly continuous turbulence with few long-lived intermittent events occurs when Ribr < Ricr, the critical gradient Richardson number. Less-continuous mixing associated with a larger number of events occurs when Ricr < Ribr < 5, with the weakest turbulence and fewer events observed for Ribr ≫ Ricr. It was found that the need to allow for extra mixing above the conventional critical bulk Richardson number in numerical weather prediction models is primarily a consequence of spatial averaging in a heterogeneous landscape and is secondarily the result of turbulence above Ricr at locations with “nonideal fetch.”

Current affiliation: Universidade Federal de Santa Maria, Santa Maria, Brazil.

Corresponding author address: Luiz E. Medeiros, Departamento de Física, Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, Santa Maria RS 97105-900, Brazil. E-mail: ducamobi@gmail.com

Abstract

Average heat and momentum fluxes observed by a network of surface stations during the Hudson Valley Ambient Meteorology Study (HVAMS) were found as functions of a spatially representative bulk Richardson number Ribr. Preferential sites were identified for the occurrence of strong turbulence under mesoscale stability conditions common to all stations. Locally sensed turbulence intermittency depends on the mesoscale flow stability. Nearly continuous turbulence with few long-lived intermittent events occurs when Ribr < Ricr, the critical gradient Richardson number. Less-continuous mixing associated with a larger number of events occurs when Ricr < Ribr < 5, with the weakest turbulence and fewer events observed for Ribr ≫ Ricr. It was found that the need to allow for extra mixing above the conventional critical bulk Richardson number in numerical weather prediction models is primarily a consequence of spatial averaging in a heterogeneous landscape and is secondarily the result of turbulence above Ricr at locations with “nonideal fetch.”

Current affiliation: Universidade Federal de Santa Maria, Santa Maria, Brazil.

Corresponding author address: Luiz E. Medeiros, Departamento de Física, Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, Santa Maria RS 97105-900, Brazil. E-mail: ducamobi@gmail.com
Save