• Bustinza, R., G. Lebel, P. Gosselin, D. Bélanger, and F. Chebana, 2013: Health impacts of the July 2010 heat wave in Québec, Canada. BMC Public Health, 13, 56, doi:10.1186/1471-2458-13-56.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143, doi:10.1175/JCLI3761.1.

    • Search Google Scholar
    • Export Citation
  • Ding, T., and W. Qian, 2011: Geographical patterns and temporal variations of regional dry and wet heatwave events in China during 1960–2008. Adv. Atmos. Sci., 28, 322337, doi:10.1007/s00376-010-9236-7.

    • Search Google Scholar
    • Export Citation
  • Donat, M. G., and Coauthors, 2013: Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. Atmos., 118, 20982118, doi:10.1002/jgrd.50150.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. I. Seneviratne, D. Lüthi, and C. Schär, 2007: Contribution of land–atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett., 34, L06707, doi:10.1029/2006GL029068.

    • Search Google Scholar
    • Export Citation
  • Flato, G. M., G. J. Boer, W. G. Lee, N. A. McFarlane, D. Ramsden, M. C. Reader, and A. J. Weaver, 2000: The Canadian Centre for Climate Modeling and Analysis Global Coupled Model and its climate. Climate Dyn., 16, 451467, doi:10.1007/s003820050339.

    • Search Google Scholar
    • Export Citation
  • Geng, Q., R. Mo, M. Brugman, B. Snyder, J. Goosen, and G. Pearce, 2012: Interaction of an intense Pacific low pressure system with a strong Arctic outbreak over British Columbia: Forecast challenges of the early December 2007 storm. Atmos.–Ocean, 50, 95108, doi:10.1080/07055900.2012.656261.

    • Search Google Scholar
    • Export Citation
  • GFDL Global Atmospheric Model Development Team, 2004: The new GFDL global atmospheric and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673, doi:10.1175/JCLI-3223.1.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., M. R. Marinucci, and G. T. Bates, 1993a: Development of a second-generation regional climate model (RegCM2). Part I: Boundary-layer and radiative transfer processes. Mon. Wea. Rev., 121, 27942813, doi:10.1175/1520-0493(1993)121<2794:DOASGR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., M. R. Marinucci, G. de Canio, and G. T. Bates, 1993b: Development of a second-generation regional climate model (RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon. Wea. Rev., 121, 28142832, doi:10.1175/1520-0493(1993)121<2814:DOASGR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16, 147168, doi:10.1007/s003820050010.

    • Search Google Scholar
    • Export Citation
  • Isaac, G. A., and R. A. Stuart, 1992: Temperature–precipitation relationships for Canadian stations. J. Climate, 5, 822830, doi:10.1175/1520-0442(1992)005<0822:TRFCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jakob, M., and M. Church, 2011: The trouble with floods. Can. Water Resour. J., 36, 287292, doi:10.4296/cwrj3604928.

  • Jiang, Y., and B. Huang, 2000: Effects of drought or heat stress alone and in combination on Kentucky bluegrass. Crop Sci., 40, 13581362, doi:10.2135/cropsci2000.4051358x.

    • Search Google Scholar
    • Export Citation
  • Jones, R., D. Hassell, D. Hudson, S. Wilson, G. Jenkins, and J. Mitchell, 2003: Generating high resolution climate change scenarios using PRECIS. UNDP National Communications Unit Workbook, 34 pp.

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kysely, J., L. Pokorna, J. Kyncl, and B. Kriz, 2009: Excess cardiovascular mortality associated with cold spells in the Czech Republic. BMC Public Health, 9, 19, doi:10.1186/1471-2458-9-19.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., and K.-M. Kim, 2012: The 2010 Pakistan flood and Russian heat wave: Teleconnection of hydrometeorological extremes. J. Hydrometeor., 13, 392403, doi:10.1175/JHM-D-11-016.1.

    • Search Google Scholar
    • Export Citation
  • Levinson, D. H., and A. M. Waple, 2004: State of the climate in 2003. Bull. Amer. Meteor. Soc., 85, 881881, doi:10.1175/BAMS-85-6-Levinson.

    • Search Google Scholar
    • Export Citation
  • Ma, W., C. Yang, C. Chu, T. Li, J. Tan, and H. Kan, 2013: The impact of the 2008 cold spell on mortality in Shanghai, China. Int. J. Biometeor., 57, 179184, doi:10.1007/s00484-012-0545-7.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and J. Williams, 1978: The correlation between temperature and precipitation in the United States and Europe. Mon. Wea. Rev., 106, 142147, doi:10.1175/1520-0493(1978)106<0142:TCBTAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matsueda, M., 2011: Predictability of Euro-Russian blocking in summer of 2010. Geophys. Res. Lett., 38, L06801, doi:10.1029/2010GL046557.

    • Search Google Scholar
    • Export Citation
  • McGregor, G. R., C. A. T. Ferro, and D. B. Stephenson, 2005: Projected changes in extreme weather and climate events in Europe. Extreme Weather Events and Public Health, W. Kirch, B. Menne, and R. Bertollini, Eds., Springer, 13–24.

  • Mearns, L. O., and Coauthors, 2012: The North American Regional Climate Change Assessment Program: Overview of Phase I results. Bull. Amer. Meteor. Soc., 93, 13371362, doi:10.1175/BAMS-D-11-00223.1.

    • Search Google Scholar
    • Export Citation
  • Mekis, É., and L. A. Vincent, 2011: An overview of the Second Generation Adjusted Daily Precipitation Dataset for Trend Analysis in Canada. Atmos.–Ocean, 49, 163177, doi:10.1080/07055900.2011.583910.

    • Search Google Scholar
    • Export Citation
  • Pal, J. S., E. E. Small, and E. A. B. Eltahir, 2000: Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. J. Geophys. Res., 105, 29 57929 594, doi:10.1029/2000JD900415.

    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and Coauthors, 2007: Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET. Bull. Amer. Meteor. Soc., 88, 13951409, doi:10.1175/BAMS-88-9-1395.

    • Search Google Scholar
    • Export Citation
  • Pope, V. D., M. L. Gallani, P. R. Rowntree, and R. A. Stratton, 2000: The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3. Climate Dyn., 16, 123146, doi:10.1007/s003820050009.

    • Search Google Scholar
    • Export Citation
  • Schär, C., and G. Jendritzky, 2004: Hot news from summer 2003. Nature, 432, 559560, doi:10.1038/432559a.

  • Scinocca, J. F., and N. A. McFarlane, 2004: The variability of modeled tropical precipitation. J. Atmos. Sci., 61, 19932015, doi:10.1175/1520-0469(2004)061<1993:TVOMTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shabbar, A., and B. Bonsal, 2003: An assessment of changes in winter cold and warm spells over Canada. Nat. Hazards, 29, 173188, doi:10.1023/A:1023639209987.

    • Search Google Scholar
    • Export Citation
  • Simonovic, S. P., 2009: Managing flood risk, reliability and vulnerability. J. Flood Risk Manage., 2, 230231, doi:10.1111/j.1753-318X.2009.01040.x.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/docs/arw_v2.pdf.]

  • Stocker, T. F., and Coauthors, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp. [Available online at http://www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf.]

  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, doi:10.1029/2000JD900719.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1999: Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change, 42, 327339, doi:10.1023/A:1005488920935.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. J. Shea, 2005: Relationships between precipitation and surface temperature. Geophys. Res. Lett., 32, L14703, doi:10.1029/2005GL022760.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2012: Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010. J. Geophys. Res., 117, D17103, doi:10.1029/2012JD018020.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., and Coauthors, 2007: Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit. Geophys. Res. Lett., 34, L07711, doi:10.1029/2006GL028001.

    • Search Google Scholar
    • Export Citation
  • Vincent, L. A., X. L. Wang, E. J. Milewska, H. Wan, F. Yang, and V. Swail, 2012: A second generation of homogenized Canadian monthly surface air temperature for climate trend analysis. J. Geophys. Res., 117, D18110, doi:10.1029/2012JD017859.

    • Search Google Scholar
    • Export Citation
  • Westra, S., L. V. Alexander, and F. W. Zwiers, 2013: Global increasing trends in annual maximum daily precipitation. J. Climate, 26, 39043918, doi:10.1175/JCLI-D-12-00502.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1997: Resampling hypothesis tests for autocorrelated fields. J. Climate, 10, 6582, doi:10.1175/1520-0442(1997)010<0065:RHTFAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. Academic Press, 676 pp.

  • Yates, F., 1934: Contingency tables involving small numbers and the χ2 test. Supplement to the J. Roy. Stat. Soc., 1 (Suppl.), 217235. [Available online at http://www.jstor.org/stable/2983604.]

    • Search Google Scholar
    • Export Citation
  • Yates, F., 1984: Tests of significance for 2 ×2 contingency tables. J. Roy. Stat. Soc., 147A, 426463, doi:10.2307/2981577.

  • Zhang, X., L. V. Alexander, G. C. Hegerl, P. Jones, A. M. G. Klein Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev.: Climate Change, 2, 851870, doi:10.1002/wcc.147.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 322 116 14
PDF Downloads 357 163 13

Joint Occurrence of Daily Temperature and Precipitation Extreme Events over Canada

Bárbara TencerSchool of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Bárbara Tencer in
Current site
Google Scholar
PubMed
Close
,
Andrew WeaverSchool of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Andrew Weaver in
Current site
Google Scholar
PubMed
Close
, and
Francis ZwiersPacific Climate Impacts Consortium, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Francis Zwiers in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The occurrence of individual extremes such as temperature and precipitation extremes can have a great impact on the environment. Agriculture, energy demands, and human health, among other activities, can be affected by extremely high or low temperatures and by extremely dry or wet conditions. The simultaneous or proximate occurrence of both types of extremes could lead to even more profound consequences, however. For example, a dry period can have more negative consequences on agriculture if it is concomitant with or followed by a period of extremely high temperatures. This study analyzes the joint occurrence of very wet conditions and high/low temperature events at stations in Canada. More than one-half of the stations showed a significant positive relationship at the daily time scale between warm nights (daily minimum temperature greater than the 90th percentile) or warm days (daily maximum temperature above the 90th percentile) and heavy-precipitation events (daily precipitation exceeding the 75th percentile), with the greater frequencies found for the east and southwest coasts during autumn and winter. Cold days (daily maximum temperature below the 10th percentile) occur together with intense precipitation more frequently during spring and summer. Simulations by regional climate models show good agreement with observations in the seasonal and spatial variability of the joint distribution, especially when an ensemble of simulations was used.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-13-0361.s1.

Corresponding author address: Bárbara Tencer, School of Earth and Ocean Sciences, University of Victoria, P.O. Box 1700, Station CSC, Victoria, BC V8W2Y2, Canada. E-mail: btencer@uvic.ca

Abstract

The occurrence of individual extremes such as temperature and precipitation extremes can have a great impact on the environment. Agriculture, energy demands, and human health, among other activities, can be affected by extremely high or low temperatures and by extremely dry or wet conditions. The simultaneous or proximate occurrence of both types of extremes could lead to even more profound consequences, however. For example, a dry period can have more negative consequences on agriculture if it is concomitant with or followed by a period of extremely high temperatures. This study analyzes the joint occurrence of very wet conditions and high/low temperature events at stations in Canada. More than one-half of the stations showed a significant positive relationship at the daily time scale between warm nights (daily minimum temperature greater than the 90th percentile) or warm days (daily maximum temperature above the 90th percentile) and heavy-precipitation events (daily precipitation exceeding the 75th percentile), with the greater frequencies found for the east and southwest coasts during autumn and winter. Cold days (daily maximum temperature below the 10th percentile) occur together with intense precipitation more frequently during spring and summer. Simulations by regional climate models show good agreement with observations in the seasonal and spatial variability of the joint distribution, especially when an ensemble of simulations was used.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-13-0361.s1.

Corresponding author address: Bárbara Tencer, School of Earth and Ocean Sciences, University of Victoria, P.O. Box 1700, Station CSC, Victoria, BC V8W2Y2, Canada. E-mail: btencer@uvic.ca

Supplementary Materials

    • Supplemental Materials (PDF 7.32 MB)
Save