• Ackerman, S. A., K. I. Strabala, P. W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, 1998: Discriminating clear sky from clouds with MODIS. J. Geophys. Res., 103, 32 14132 157, doi:10.1029/1998JD200032.

    • Search Google Scholar
    • Export Citation
  • Ackerman, S. A., R. E. Holz, R. Frey, E. W. Eloranta, B. Maddux, and M. McGill, 2008: Cloud detection with MODIS. Part II: Validation. J. Atmos. Oceanic Technol., 25, 10731086, doi:10.1175/2007JTECHA1053.1.

    • Search Google Scholar
    • Export Citation
  • Box, J. E., 2002: Survey of Greenland instrumental temperature records: 1873–2001. Int. J. Climatol., 22, 18291847, doi:10.1002/joc.852.

    • Search Google Scholar
    • Export Citation
  • Box, J. E., X. Fettweis, J. C. Stroeve, M. Tedesco, D. K. Hall, and K. Steffen, 2012: Greenland Ice Sheet albedo feedback: Thermodynamics and atmospheric drivers. Cryosphere, 6, 821839, doi:10.5194/tc-6-821-2012.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 2006: Arctic warming signals from satellite observations. Weather, 61 (3), 7076, doi:10.1256/wea.222.05.

  • Comiso, J. C., J. Yang, S. Honjo, and R. A. Krishfield, 2003: Detection of change in the Arctic using satellite and in situ data. J. Geophys. Res., 108, 3384, doi:10.1029/2002JC001347.

    • Search Google Scholar
    • Export Citation
  • Cullather, R. I., S. M. J. Nowicki, B. Zhao, and M. J. Suarez, 2014: Evaluation of the surface representation of the Greenland Ice Sheet in a general circulation model. J. Climate, 27, 48354856, doi:10.1175/JCLI-D-13-00635.1.

    • Search Google Scholar
    • Export Citation
  • Dozier, J., and S. Warren, 1982: Effect of viewing angle on the infrared brightness temperature of snow. Water Resour. Res., 18, 14241434, doi:10.1029/WR018i005p01424.

    • Search Google Scholar
    • Export Citation
  • Frey, R., S. Ackerman, Y. Liu, K. Strabala, H. Zhang, J. Key, and X. Wang, 2008: Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for Collection 5. J. Atmos. Oceanic Technol., 25, 10571072, doi:10.1175/2008JTECHA1052.1.

    • Search Google Scholar
    • Export Citation
  • Genthon, C., D. Six, V. Favier, M. Lazzara, and L. Keller, 2011: Atmospheric temperature measurement biases on the Antarctic Plateau. J. Atmos. Oceanic Technol., 28, 15981605, doi:10.1175/JTECH-D-11-00095.1.

    • Search Google Scholar
    • Export Citation
  • Hall, D. K., J. Key, K. A. Casey, G. A. Riggs, and D. J. Cavalieri, 2004: Sea ice surface temperature product from MODIS. IEEE Trans. Geosci. Remote Sens., 42, 10761087, doi:10.1109/TGRS.2004.825587.

    • Search Google Scholar
    • Export Citation
  • Hall, D. K., J. E. Box, K. A. Casey, S. J. Hook, C. A. Shuman, and K. Steffen, 2008a: Comparison of satellite-derived and in-situ observations of ice and snow surface temperatures over Greenland. Remote Sens. Environ., 112, 37393749, doi:10.1016/j.rse.2008.05.007.

    • Search Google Scholar
    • Export Citation
  • Hall, D. K., R. S. Williams Jr., S. B. Luthcke, and N. E. DiGirolamo, 2008b: Greenland Ice Sheet surface temperature, melt and mass loss: 2000–2006. J. Glaciol., 54, 8193, doi:10.3189/002214308784409170.

    • Search Google Scholar
    • Export Citation
  • Hall, D. K., S. V. Nghiem, C. B. Schaaf, N. E. DiGirolamo, and G. Neumann, 2009: Evaluation of surface and near-surface melt characteristics on the Greenland Ice Sheet using MODIS and QuikSCAT data. J. Geophys. Res., 114, F04006, doi:10.1029/2009JF001287.

    • Search Google Scholar
    • Export Citation
  • Hall, D. K., J. C. Comiso, N. E. DiGirolamo, C. A. Shuman, J. R. Key, and L. S. Koenig, 2012: A satellite-derived climate-quality data record of the clear-sky surface temperature of the Greenland Ice Sheet. J. Climate, 25, 47854798, doi:10.1175/JCLI-D-11-00365.1.

    • Search Google Scholar
    • Export Citation
  • Hall, D. K., J. C. Comiso, N. E. DiGirolamo, C. A. Shuman, J. E. Box, and L. S. Koenig, 2013: Variability in the surface temperature and melt extent of the Greenland Ice Sheet from MODIS. Geophys. Res. Lett., 40, 21142120, doi:10.1002/grl.50240.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., and Coauthors, 2014: Atmospheric and oceanic climate forcing of the exceptional Greenland Ice Sheet surface melt in summer 2012. Int. J. Climatol., 34, 10221037, doi:10.1002/joc.3743.

    • Search Google Scholar
    • Export Citation
  • Hudson, S. R., and R. E. Brandt, 2005: A look at the surface-based temperature inversion on the Antarctic Plateau. J. Climate, 18, 16731696, doi:10.1175/JCLI3360.1.

    • Search Google Scholar
    • Export Citation
  • Key, J., and M. Haefliger, 1992: Arctic ice surface temperature retrieval from AVHRR thermal channels. J. Geophys. Res., 97, 58855893, doi:10.1029/92JD00348.

    • Search Google Scholar
    • Export Citation
  • Koenig, L. S., and D. K. Hall, 2010: Comparison of satellite, thermochron and station temperatures at Summit, Greenland, during the winter of 2008/09. J. Glaciol., 56, 735741, doi:10.3189/002214310793146269.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., J. Key, R. Frey, S. Ackerman, and W. P. Menzel, 2004: Nighttime polar cloud detection with MODIS. Remote Sens. Environ., 92, 181194, doi:10.1016/j.rse.2004.06.004.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., J. Key, and X. Wang, 2009: Influence of changes in sea ice concentration and cloud cover on recent Arctic surface temperature trends. Geophys. Res. Lett., 36, L20710, doi:10.1029/2009GL040708.

    • Search Google Scholar
    • Export Citation
  • Lucas-Picher, P., M. Wulff-Nielsen, J. H. Christensen, G. Aðalgeirsdoìttir, R. Mottram, and S. B. Simonsen, 2012: Very high resolution regional climate model simulations over Greenland: Identifying added value. J. Geophys. Res., 117, D02108, doi:10.1029/2011JD016267.

    • Search Google Scholar
    • Export Citation
  • Miller, D. H., 1956: The influence of snow cover on local climate in Greenland. J. Meteor., 13, 112120, doi:10.1175/1520-0469(1956)013<0112:TIOSCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miller, N. B., D. D. Turner, R. Bennartz, M. D. Shupe, M. S. Kulie, M. P. Cadeddu, and V. P. Walden, 2013: Surface-based inversions above central Greenland. J. Geophys. Res., 118, 495506, doi:10.1029/2012JD018867.

    • Search Google Scholar
    • Export Citation
  • Nghiem, S. V., and Coauthors, 2012: The extreme melt across the Greenland Ice Sheet in 2012. Geophys. Res. Lett., 39, L20502, doi:10.1029/2012GL053611.

    • Search Google Scholar
    • Export Citation
  • Østby, T. I., T. V. Schuler, and S. Westermann, 2014: Severe cloud contamination of MODIS land surface temperatures over an Arctic ice cap, Svalbard. Remote Sens. Environ., 142, 95102, doi:10.1016/j.rse.2013.11.005.

    • Search Google Scholar
    • Export Citation
  • Rennermalm, Å., and Coauthors, 2013: Understanding Greenland Ice Sheet hydrology using an integrated multi-scale approach. Environ. Res. Lett., 8, 015017, doi:10.1088/1748-9326/8/1/015017.

    • Search Google Scholar
    • Export Citation
  • Riggs, G. A., D. K. Hall, and V. V. Salomonson, 2006: MODIS snow products user guide to Collection 5. NASA Goddard Space Flight Center Tech. Doc., 80 pp. [Available online at http://modis-snow-ice.gsfc.nasa.gov/uploads/sug_c5.pdf.]

  • Shuman, C. A., K. Steffen, J. E. Box, and C. R. Stearns, 2001: A dozen years of temperature observations at the Summit: Central Greenland automatic weather stations 1987–99. J. Appl. Meteor., 40, 741752, doi:10.1175/1520-0450(2001)040<0741:ADYOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stearns, C. R., and G. A. Weidner, 1990: Snow temperature profiles and heat fluxes measured on the Greenland crest by automatic weather stations. Proc. Int. Conf. on the Role of Polar Regions on Climate Change, Vol. 1, Fairbanks, AK, Geophysical Institute and the Center for Global Change and Arctic System Research, University of Alaska, Fairbanks, 223–226.

  • Steffen, K., and J. Box, 2001: Surface climatology of the Greenland Ice Sheet: Greenland Climate Network 1995–1999. J. Geophys. Res., 106, 33 95133 964, doi:10.1029/2001JD900161.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., and K. Steffen, 1998: Variability of AVHRR-derived clear-sky surface temperature over the Greenland Ice Sheet. J. Appl. Meteor., 37, 2331, doi:10.1175/1520-0450(1998)037<0023:VOADCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., J. Box, and T. Haran, 2006: Evaluation of the MODIS (MOD10A) daily snow albedo product over the Greenland Ice Sheet. Remote Sens. Environ., 105, 155171, doi:10.1016/j.rse.2006.06.009.

    • Search Google Scholar
    • Export Citation
  • van den Broeke, M. R., P. Smeets, J. Ettema, C. van der Veen, R. van de Wal, and J. Oerlemans, 2008: Partitioning of melt energy and meltwater fluxes in the ablation zone of the west Greenland Ice Sheet. Cryosphere, 2, 179189, doi:10.5194/tc-2-179-2008.

    • Search Google Scholar
    • Export Citation
  • van den Broeke, M. R., C. J. P. P. Smeets, and R. S. W. van de Wal, 2011: The seasonal cycle and interannual variability of surface energy balance and melt in the ablation zone of the west Greenland Ice Sheet. Cryosphere, 5, 377390, doi:10.5194/tc-5-377-2011.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and J. Key, 2005a: Arctic surface, cloud, and radiation properties based on the AVHRR Polar Pathfinder dataset. Part I: Spatial and temporal characteristics. J. Climate, 18, 25582574, doi:10.1175/JCLI3438.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and J. Key, 2005b: Arctic surface, cloud, and radiation properties based on the AVHRR Polar Pathfinder data set. Part II: Recent trends. J. Climate, 18, 25752593, doi:10.1175/JCLI3439.1.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., and R. E. Brandt, 2008: Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res., 113, D14220, doi:10.1029/2007JD009744.

    • Search Google Scholar
    • Export Citation
  • Westermann, S., M. Langer, and J. Boike, 2012: Systematic bias of average winter-time land surface temperatures inferred from MODIS at a site on Svalbard, Norway. Remote Sens. Environ., 118, 162167, doi:10.1016/j.rse.2011.10.025.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 263 91 11
PDF Downloads 198 90 1

Comparison of Near-Surface Air Temperatures and MODIS Ice-Surface Temperatures at Summit, Greenland (2008–13)

Christopher A. ShumanJoint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, and NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Christopher A. Shuman in
Current site
Google Scholar
PubMed
Close
,
Dorothy K. HallCryospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Dorothy K. Hall in
Current site
Google Scholar
PubMed
Close
,
Nicolo E. DiGirolamoScience Systems and Applications, Inc., and NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Nicolo E. DiGirolamo in
Current site
Google Scholar
PubMed
Close
,
Thomas K. MeffordCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Thomas K. Mefford in
Current site
Google Scholar
PubMed
Close
, and
Michael J. SchnaubeltJoint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by Michael J. Schnaubelt in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The stability of the Moderate Resolution Imaging Spectroradiometer (MODIS) ice-surface temperature (IST) product from Terra was investigated for use as a climate-quality data record. The availability of climate-quality air temperature data TA from a NOAA observatory at Greenland’s Summit Station has enabled this high-temporal-resolution study of MODIS ISTs. During a >5-yr period (July 2008–August 2013), more than 2500 IST values were compared with ±3-min-average TA values from NOAA’s primary 2-m temperature sensor. This enabled an expected small offset between air and ice-sheet surface temperatures (TA > IST) to be investigated over multiple annual cycles. The principal findings of this study show 1) that IST values are slightly colder than the TA values near freezing but that this offset increases as temperature decreases and 2) that there is a pattern in IST–TA differences as the solar zenith angle (SoZA) varies annually. This latter result largely explains the progressive offset from the in situ data at colder temperatures but also indicates that the MODIS cloud mask is less accurate approaching and during the polar night. The consistency of the results over each year in this study indicates that MODIS provides a platform for remotely deriving surface temperature data, with the resulting IST data being most compatible with in situ TA data when the sky is clear and the SoZA is less than ~85°. The ongoing development of the IST dataset should benefit from improved cloud filtering as well as algorithm modifications to account for the progressive offset from TA at colder temperatures.

Corresponding author address: Christopher A. Shuman, Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Code 615, Greenbelt, MD 20771. E-mail: christopher.a.shuman@nasa.gov

Abstract

The stability of the Moderate Resolution Imaging Spectroradiometer (MODIS) ice-surface temperature (IST) product from Terra was investigated for use as a climate-quality data record. The availability of climate-quality air temperature data TA from a NOAA observatory at Greenland’s Summit Station has enabled this high-temporal-resolution study of MODIS ISTs. During a >5-yr period (July 2008–August 2013), more than 2500 IST values were compared with ±3-min-average TA values from NOAA’s primary 2-m temperature sensor. This enabled an expected small offset between air and ice-sheet surface temperatures (TA > IST) to be investigated over multiple annual cycles. The principal findings of this study show 1) that IST values are slightly colder than the TA values near freezing but that this offset increases as temperature decreases and 2) that there is a pattern in IST–TA differences as the solar zenith angle (SoZA) varies annually. This latter result largely explains the progressive offset from the in situ data at colder temperatures but also indicates that the MODIS cloud mask is less accurate approaching and during the polar night. The consistency of the results over each year in this study indicates that MODIS provides a platform for remotely deriving surface temperature data, with the resulting IST data being most compatible with in situ TA data when the sky is clear and the SoZA is less than ~85°. The ongoing development of the IST dataset should benefit from improved cloud filtering as well as algorithm modifications to account for the progressive offset from TA at colder temperatures.

Corresponding author address: Christopher A. Shuman, Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Code 615, Greenbelt, MD 20771. E-mail: christopher.a.shuman@nasa.gov
Save