A Field Experiment on the Small-Scale Variability of Rainfall Based on a Network of Micro Rain Radars and Rain Gauges

Yong Chen State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Yong Chen in
Current site
Google Scholar
PubMed
Close
,
Huizhi Liu State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Huizhi Liu in
Current site
Google Scholar
PubMed
Close
,
Junling An State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Junling An in
Current site
Google Scholar
PubMed
Close
,
Ulrich Görsdorf Meteorologisches Observatorium Lindenberg/Richard Aβmann Observatory, Deutscher Wetterdienst, Lindenberg, Germany

Search for other papers by Ulrich Görsdorf in
Current site
Google Scholar
PubMed
Close
, and
Franz H. Berger Meteorologisches Observatorium Lindenberg/Richard Aβmann Observatory, Deutscher Wetterdienst, Lindenberg, Germany

Search for other papers by Franz H. Berger in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Small-scale summer rainfall variability in a semiarid zone was studied by deploying five vertically pointing Micro Rain Radars (MRRs) along a nearly straight line and by using 12 rain gauges in the study area of the Xilin River catchment in China. The spatial scales of 4 and 9 km correspond to the resolution of precipitation radar and rainfall products from satellites. The dataset of the MRRs and rain gauges covers two months in the summer of 2009. Three parameters, that is, spatial correlation, intermittency, and the coefficient of variation (CV), were used to describe the rainfall variability as based on the data from the MRRs and rain gauges. The probability of partial beamfilling in a 4-km (9 km) pixel over a 30-min temporal scale was 17%–20% (28%–37%). More accurate equipment can measure lower rainfall intermittency. For scales of 4 and 9 km, the median CV of the accumulation times that were longer than 3 h with rainfall > 1 mm was 0.17–0.42. The accuracy of areal rainfall measured by different quantities of equipment was also evaluated. One MRR was sufficient for measuring the daily areal rainfall at a 4-km scale, with a fraction of prediction within a factor of 2 of observations of 1.0 and a correlation coefficient of ≥0.58 when daily mean rainfall was >1 mm.

Corresponding author address: Yong Chen, LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China. E-mail: chenyong@mail.iap.ac.cn

Abstract

Small-scale summer rainfall variability in a semiarid zone was studied by deploying five vertically pointing Micro Rain Radars (MRRs) along a nearly straight line and by using 12 rain gauges in the study area of the Xilin River catchment in China. The spatial scales of 4 and 9 km correspond to the resolution of precipitation radar and rainfall products from satellites. The dataset of the MRRs and rain gauges covers two months in the summer of 2009. Three parameters, that is, spatial correlation, intermittency, and the coefficient of variation (CV), were used to describe the rainfall variability as based on the data from the MRRs and rain gauges. The probability of partial beamfilling in a 4-km (9 km) pixel over a 30-min temporal scale was 17%–20% (28%–37%). More accurate equipment can measure lower rainfall intermittency. For scales of 4 and 9 km, the median CV of the accumulation times that were longer than 3 h with rainfall > 1 mm was 0.17–0.42. The accuracy of areal rainfall measured by different quantities of equipment was also evaluated. One MRR was sufficient for measuring the daily areal rainfall at a 4-km scale, with a fraction of prediction within a factor of 2 of observations of 1.0 and a correlation coefficient of ≥0.58 when daily mean rainfall was >1 mm.

Corresponding author address: Yong Chen, LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China. E-mail: chenyong@mail.iap.ac.cn
Save
  • Atlas, D., R. Srivastava, and R. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Phys., 11, 135, doi:10.1029/RG011i001p00001.

    • Search Google Scholar
    • Export Citation
  • Berne, A., G. Delrieu, J.-D. Creutin, and C. Obled, 2004: Temporal and spatial resolution of rainfall measurements required for urban hydrology. J. Hydrol., 299, 166179, doi:10.1016/j.jhydrol.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Cha, J.-W., K.-H. Chang, S. S. Yum, and Y.-J. Choi, 2009: Comparison of the bright band characteristics measured by Micro Rain Radar (MRR) at a mountain and a coastal site in South Korea. Adv. Atmos. Sci., 26, 211221, doi:10.1007/s00376-009-0211-0.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., 1988: Topography and climate of Xilin River Basin (in Chinese). Research of Grassland Ecosystem Series, Vol. 3, Science Press.

  • Ciach, G. J., and W. F. Krajewski, 2006: Analysis and modeling of spatial correlation structure in small-scale rainfall in central Oklahoma. Adv. Water Resour., 29, 14501463, doi:10.1016/j.advwatres.2005.11.003.

    • Search Google Scholar
    • Export Citation
  • Emmanuel, I., H. Andrieu, E. Leblois, and B. Flahaut, 2012: Temporal and spatial variability of rainfall at the urban hydrological scale. J. Hydrol., 430–431, 162172, doi:10.1016/j.jhydrol.2012.02.013.

    • Search Google Scholar
    • Export Citation
  • Fan, L., S. Liu, C. Bernhofer, H. Liu, and F. Berger, 2007: Regional land surface energy fluxes by satellite remote sensing in the Upper Xilin River watershed (Inner Mongolia, China). Theor. Appl. Climatol., 88, 231245, doi:10.1007/s00704-006-0241-9.

    • Search Google Scholar
    • Export Citation
  • Goodrich, D., and Coauthors, 2000: Preface paper to the Semi-Arid Land-Surface-Atmosphere (SALSA) Program special issue. Agric. For. Meteor., 105, 320, doi:10.1016/S0168-1923(00)00178-7.

    • Search Google Scholar
    • Export Citation
  • Gunn, R., and G. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Atmos. Sci., 6, 243248.

  • Habib, E., and W. Krajewski, 2002: Uncertainty analysis of the TRMM ground-validation radar-rainfall products: Application to the TEFLUN-B field campaign. J. Appl. Meteor., 41, 558572, doi:10.1175/1520-0450(2002)041<0558:UAOTTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Habib, E., W. Krajewski, and G. Ciach, 2001: Estimation of rainfall interstation correlation. J. Hydrometeor., 2, 621629, doi:10.1175/1525-7541(2001)002<0621:EORIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Habib, E., A. T. Haile, Y. Tian, and R. J. Joyce, 2012: Evaluation of the high-resolution CMORPH satellite rainfall product using dense rain gauge observations and radar-based estimates. J. Hydrometeor., 13, 17841798, doi:10.1175/JHM-D-12-017.1.

    • Search Google Scholar
    • Export Citation
  • Harikumar, R., S. Sampath, and V. Sasi Kumar, 2012: Altitudinal and temporal evolution of raindrop size distribution observed over a tropical station using a K-band radar. Int. J. Remote Sens., 33, 32863300, doi:10.1080/01431161.2010.549853.

    • Search Google Scholar
    • Export Citation
  • Humphrey, M., J. Istok, J. Lee, J. Hevesi, and A. Flint, 1997: A new method for automated dynamic calibration of tipping-bucket rain gauges. J. Atmos. Oceanic Technol., 14, 15131519, doi:10.1175/1520-0426(1997)014<1513:ANMFAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jaffrain, J., and A. Berne, 2012: Quantification of the small-scale spatial structure of the raindrop size distribution from a network of disdrometers. J. Appl. Meteor. Climatol., 51, 941953, doi:10.1175/JAMC-D-11-0136.1.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kitchen, M., and R. Blackall, 1992: Representativeness errors in comparisons between radar and gauge measurements of rainfall. J. Hydrol., 134, 1333, doi:10.1016/0022-1694(92)90026-R.

    • Search Google Scholar
    • Export Citation
  • Klugmann, D., K. Heinsohn, and H.-J. Kirtzel, 1996: A low cost 24 GHz FM-CW Doppler radar rain profiler. Contrib. Atmos. Phys., 69, 247253.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., and J. Smith, 2002: Radar hydrology: Rainfall estimation. Adv. Water Resour., 25, 13871394, doi:10.1016/S0309-1708(02)00062-3.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., G. Ciach, and E. Habib, 2003: An analysis of small-scale rainfall variability in different climatic regimes. Hydrol. Sci. J., 48, 151162, doi:10.1623/hysj.48.2.151.44694.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., and Coauthors, 2006: DEVEX—Disdrometer evaluation experiment: Basic results and implications for hydrologic studies. Adv. Water Resour., 29, 311325, doi:10.1016/j.advwatres.2005.03.018.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, C. K., G. W. Lee, I. Zawadzki, and K.-E. Kim, 2009: A preliminary analysis of spatial variability of raindrop size distributions during stratiform rain events. J. Appl. Meteor. Climatol., 48, 270283, doi:10.1175/2008JAMC1877.1.

    • Search Google Scholar
    • Export Citation
  • Liao, L., and R. Meneghini, 2009: Changes in the TRMM version-5 and version-6 precipitation radar products due to orbit boost. J. Meteor. Soc. Japan, 87A, 93107, doi:10.2151/jmsj.87A.93.

    • Search Google Scholar
    • Export Citation
  • Löffler-Mang, M., M. Kunz, and W. Schmid, 1999: On the performance of a low-cost K-band Doppler radar for quantitative rain measurements. J. Atmos. Oceanic Technol., 16, 379387, doi:10.1175/1520-0426(1999)016<0379:OTPOAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maahn, M., and P. Kollias, 2012: Improved Micro Rain Radar snow measurements using Doppler spectra post-processing. Atmos. Meas. Tech., 5, 26612673, doi:10.5194/amt-5-2661-2012.

    • Search Google Scholar
    • Export Citation
  • Miriovsky, B. J., and Coauthors, 2004: An experimental study of small-scale variability of radar reflectivity using disdrometer observations. J. Appl. Meteor., 43, 106118, doi:10.1175/1520-0450(2004)043<0106:AESOSV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakamura, K., and T. Iguchi, 2007: Dual-wavelength radar algorithm. Measuring Precipitation from Space, Springer, 225–234.

  • Nešpor, V., and B. Sevruk, 1999: Estimation of wind-induced error of rainfall gauge measurements using a numerical simulation. J. Atmos. Oceanic Technol., 16, 450464, doi:10.1175/1520-0426(1999)016<0450:EOWIEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pedersen, L., N. Jensen, L. Christensen, and H. Madsen, 2010: Quantification of the spatial variability of rainfall based on a dense network of rain gauges. Atmos. Res., 95, 441454, doi:10.1016/j.atmosres.2009.11.007.

    • Search Google Scholar
    • Export Citation
  • Peters, G., B. Fischer, H. Münster, M. Clemens, and A. Wagner, 2005: Profiles of raindrop size distributions as retrieved by microrain radars. J. Appl. Meteor., 44, 19301949, doi:10.1175/JAM2316.1.

    • Search Google Scholar
    • Export Citation
  • Peters, G., B. Fischer, and M. Clemens, 2006: Areal homogeneity of Z-R-relations. Proc. Fourth European Conf. on Radar in Meteorology and Hydrology, Barcelona, Spain, ERAD, 149152. [Available online at http://www.crahi.upc.edu/ERAD2006/proceedingsMask/00040.pdf.]

  • Peters, G., B. Fischer, and M. Clemens, 2010: Rain attenuation of radar echoes considering finite-range resolution and using drop size distributions. J. Atmos. Oceanic Technol., 27, 829842, doi:10.1175/2009JTECHA1342.1.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and A. P. Barros, 2010: Ground observations to characterize the spatial gradients and vertical structure of orographic precipitation—Experiments in the inner region of the Great Smoky Mountains. J. Hydrol., 391, 141156, doi:10.1016/j.jhydrol.2010.07.013.

    • Search Google Scholar
    • Export Citation
  • Sevruk, B., 1986: Correction of precipitation measurement. Proc. Workshop on the Correction of Precipitation Measurements, Zurich, Switzerland, WMO/IAHS/ETH, 1323.

  • Tapiador, F. J., R. Checa, and M. De Castro, 2010: An experiment to measure the spatial variability of rain drop size distribution using sixteen laser disdrometers. Geophys. Res. Lett., 37, L16803, doi:10.1029/2010GL044120.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., and P. G. Bashor, 2010: An experimental study of small-scale variability of raindrop size distribution. J. Appl. Meteor. Climatol., 49, 23482365, doi:10.1175/2010JAMC2269.1.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., and Ö. Kurtuluş, 2012: An experimental study of the small-scale variability of rainfall. J. Hydrometeor., 13, 351365, doi:10.1175/JHM-D-11-014.1.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., P. Hartmann, A. Battaglia, K. S. Gage, W. L. Clark, and C. R. Williams, 2009: A field study of reflectivity and Z–R relations using vertically pointing radars and disdrometers. J. Atmos. Oceanic Technol., 26, 11201134, doi:10.1175/2008JTECHA1163.1.

    • Search Google Scholar
    • Export Citation
  • Tridon, F., J. Van Baelen, and Y. Pointin, 2011: Aliasing in Micro Rain Radar data due to strong vertical winds. Geophys. Res. Lett., 38, L02804, doi:10.1029/2010GL046018.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., P. Mandapaka, W. Krajewski, and R. Moore, 2008: Rainfall and sampling uncertainties: A rain gauge perspective. J. Geophys. Res.,113, D11102, doi:10.1029/2007JD009214.

  • Zhang, L., D. Lu, S. Duan, and J. Liu, 2004: Small-scale rain nonuniformity and its effect on evaluation of nonuniform beam-filling error for spaceborne radar rain measurement. J. Atmos. Oceanic Technol., 21, 11901197, doi:10.1175/1520-0426(2004)021<1190:SRNAIE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 487 122 9
PDF Downloads 308 75 2