Observed Rainfall Asymmetry in Tropical Cyclones Making Landfall over China

Zifeng Yu College of Atmospheric Sciences, and Pacific Typhoon Research Center, Nanjing University of Information Science and Technology, Nanjing, and Shanghai Typhoon Institute, and Laboratory of Typhoon Forecast Technique, China Meteorological Administration, Shanghai, China

Search for other papers by Zifeng Yu in
Current site
Google Scholar
PubMed
Close
,
Yuqing Wang Department of Meteorology, and International Pacific Research Center, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Yuqing Wang in
Current site
Google Scholar
PubMed
Close
, and
Haiming Xu College of Atmospheric Sciences, and Pacific Typhoon Research Center, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Haiming Xu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, the rainfall asymmetries in tropical cyclones (TCs) that made landfall in the Hainan (HN), Guangdong (GD), Fujian (FJ), and Zhejiang (ZJ) provinces of mainland China and Taiwan (TW) from 2001 to 2009 were analyzed on the basis of TRMM satellite 3B42 rainfall estimates. The results reveal that in landfalling TCs, the wavenumber 1 rainfall asymmetry shows the downshear to downshear-left maximum in environmental vertical wind shear (VWS), which is consistent with previous studies for TCs over the open oceans. A cyclonic rotation from south China to east China in the location of the rainfall maximum has been identified. Before landfall, the location of the rainfall maximum rotated from southwest to southeast of the TC center for TCs making landfall in the regions from HN to GD, TW, FJ, and ZJ. After landfall, the rotation became from southwest to northeast of the TC center from south China to east China. It is shown that this cyclonic rotation in the location of the rainfall maximum is well correlated with a cyclonic rotation from south China to east China in the environmental VWS between 200 and 850 hPa, indicating that the rainfall asymmetry in TCs that made landfall over China is predominantly controlled by the large-scale VWS. The cyclonic rotation of VWS is found to be related to different interactions between the midlatitude westerlies and the landfalling TCs in different regions. The results also indicate that the axisymmetric (wavenumber 0) component of rainfall generally decreased rapidly after landfall in most studied regions.

Corresponding author address: Zifeng Yu, Shanghai Typhoon Institute, 166 Puxi Road, Xujiahui, Shanghai 200030, China. E-mail: yuzf@mail.typhoon.gov.cn

Abstract

In this study, the rainfall asymmetries in tropical cyclones (TCs) that made landfall in the Hainan (HN), Guangdong (GD), Fujian (FJ), and Zhejiang (ZJ) provinces of mainland China and Taiwan (TW) from 2001 to 2009 were analyzed on the basis of TRMM satellite 3B42 rainfall estimates. The results reveal that in landfalling TCs, the wavenumber 1 rainfall asymmetry shows the downshear to downshear-left maximum in environmental vertical wind shear (VWS), which is consistent with previous studies for TCs over the open oceans. A cyclonic rotation from south China to east China in the location of the rainfall maximum has been identified. Before landfall, the location of the rainfall maximum rotated from southwest to southeast of the TC center for TCs making landfall in the regions from HN to GD, TW, FJ, and ZJ. After landfall, the rotation became from southwest to northeast of the TC center from south China to east China. It is shown that this cyclonic rotation in the location of the rainfall maximum is well correlated with a cyclonic rotation from south China to east China in the environmental VWS between 200 and 850 hPa, indicating that the rainfall asymmetry in TCs that made landfall over China is predominantly controlled by the large-scale VWS. The cyclonic rotation of VWS is found to be related to different interactions between the midlatitude westerlies and the landfalling TCs in different regions. The results also indicate that the axisymmetric (wavenumber 0) component of rainfall generally decreased rapidly after landfall in most studied regions.

Corresponding author address: Zifeng Yu, Shanghai Typhoon Institute, 166 Puxi Road, Xujiahui, Shanghai 200030, China. E-mail: yuzf@mail.typhoon.gov.cn
Save
  • Archambault, H. M., L. F. Bosart, D. Keyser, and J. M. Cordeira, 2013: A climatological analysis of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 141, 23252346, doi:10.1175/MWR-D-12-00257.1.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., 1997: The effect of relative flow on the asymmetric structure in the interior of hurricanes. J. Atmos. Sci., 54, 703724, doi:10.1175/1520-0469(1997)054<0703:TEORFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., R. E. Tuleya, and Y. Kurihara, 1987: A numerical study of the effect of island terrain on tropical cyclones. Mon. Wea. Rev., 115, 130155, doi:10.1175/1520-0493(1987)115<0130:ANSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., J. Gamache, P. Dodge, G. Barnes, F. Marks, J. Hudson, and T. Castells, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130, 22912312, doi:10.1175/1520-0493(2002)130<2291:EPHJOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boyd, J. P., 2001: Chebyshev and Fourier Spectral Methods.2nd ed. Dover, 668 pp.

  • Chan, J. C. L., and X. Liang, 2003: Convective asymmetries associated with tropical cyclone landfall. Part I: f-plane simulations. J. Atmos. Sci., 60, 15601567, doi:10.1175/1520-0469(2003)60<1560:CAAWTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., K. S. Liu, S. E. Ching, and E. S. T. Lai, 2004: Asymmetric distribution of convection associated with tropical cyclones making landfall along the south China coast. Mon. Wea. Rev., 132, 24102420, doi:10.1175/1520-0493(2004)132<2410:ADOCAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chan, K. T. F., and J. C. L. Chan, 2013: Angular momentum transports and synoptic flow patterns associated with tropical cyclone size change. Mon. Wea. Rev., 141, 39854007, doi:10.1175/MWR-D-12-00204.1.

    • Search Google Scholar
    • Export Citation
  • Chang, C. P., T. C. Yeh, and J. M. Chen, 1993: Effects of terrain on the surface-structure of typhoons over Taiwan. Mon. Wea. Rev., 121, 734752, doi:10.1175/1520-0493(1993)121<0734:EOTOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, L., and Y. Ding, 1979: An Introduction to the West Pacific Typhoons (in Chinese). Science Press, 491 pp.

  • Chen, L., Z. Luo, and Y. Li, 2004: Research advances on tropical cyclone landfall process (in Chinese). Acta Meteor. Sin., 62, 541549.

    • Search Google Scholar
    • Export Citation
  • Chen, S., J. A. Knaff, and F. D. Marks, 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 31903208, doi:10.1175/MWR3245.1.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., E. E. Ebert, K. J. E. Walsh, and N. E. Davidson, 2013a: Evaluation of TMPA 3B42 daily precipitation estimates of tropical cyclone rainfall over Australia. J. Geophys. Res. Atmos., 118, 11 96611 978, doi:10.1002/2013JD020319.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., E. E. Ebert, K. J. E. Walsh, and N. E. Davidson, 2013b: Evaluation of TRMM 3B42 precipitation estimates of tropical cyclone rainfall using PACRAIN data. J. Geophys. Res. Atmos., 118, 2184–2196, doi:10.1002/jgrd.50250.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., and M. K. Yau, 2001: Spiral bands in a simulated hurricane. Part I: Vortex Rossby wave verification. J. Atmos. Sci., 58, 21282145, doi:10.1175/1520-0469(2001)058<2128:SBIASH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., and M. K. Yau, 2003: Asymmetric structures in a simulated landfalling hurricane. J. Atmos. Sci., 60, 22942312, doi:10.1175/1520-0469(2003)060<2294:ASIASL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, doi:10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366376, doi:10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical wind shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762088, doi:10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 14, 326337, doi:10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85, 353365, doi:10.1175/BAMS-85-3-353.

    • Search Google Scholar
    • Export Citation
  • Fiorino, M., and R. L. Elsberry, 1989: Contributions to tropical cyclone motion by small, medium and large scales in the initial vortex. Mon. Wea. Rev., 117, 721727, doi:10.1175/1520-0493(1989)117<0721:CTTCMB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 20442061, doi:10.1175/1520-0493(1999)127<2044:EOEFUT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, doi:10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., S. J. Lord, S. E. Feuer, and F. D. Marks Jr., 1993: The kinematic structure of Hurricane Gloria (1985) determined from nested analyses of dropwindsonde and Doppler radar data. Mon. Wea. Rev., 121, 24332451, doi:10.1175/1520-0493(1993)121<2433:TKSOHG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., H. E. Willoughby, M. L. Black, and C. E. Samsury, 1997: Wind shear, sea surface temperature, and convection in hurricanes observed by airborne Doppler radar. Preprints, 22nd Conf. on Hurricanes and Tropical Meteorology, Fort Collins, CO, Amer. Meteor. Soc., 121–122.

  • Hence, D. A., and R. A. Houze, 2011: Vertical structure of hurricane eyewalls as seen by the TRMM precipitation radar. J. Atmos. Sci., 68, 16371652, doi:10.1175/2011JAS3578.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., J. B. Halverson, and J. Simpson, 2008a: On the differences in storm rainfall from Hurricanes Isidore and Lili. Part I: Satellite observations and rain potential. Wea. Forecasting, 23, 2943, doi:10.1175/2007WAF2005096.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., J. B. Halverson, and E. J. Zipser, 2008b: Influence of environmental moisture on TRMM-derived tropical cyclone precipitation over land and ocean. Geophys. Res. Lett., 35, L17806, doi:10.1029/2008GL034658.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, doi:10.1002/qj.49712152406.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 2000a: The evolution of vortices in vertical shear. II: Large-scale asymmetries. Quart. J. Roy. Meteor. Soc., 126, 31373160, doi:10.1002/qj.49712657008.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 2000b: The evolution of vortices in vertical shear. III: Baroclinic vortices. Quart. J. Roy. Meteor. Soc., 126, 31613185, doi:10.1002/qj.49712657009.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 2004: On the ability of dry tropical-cyclone-like vortices to withstand vertical shear. J. Atmos. Sci., 61, 114119, doi:10.1175/1520-0469(2004)061<0114:OTAODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2002: The impact of landfall on tropical cyclone boundary layer winds. Extended Abstracts, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 8A.1A. [Available online at https://ams.confex.com/ams/pdfpapers/37219.pdf.]

  • Kepert, J. D., 2006a: Observed boundary layer wind structure and balance in the hurricane core. Part I: Hurricane Georges. J. Atmos. Sci., 63, 21692193, doi:10.1175/JAS3745.1.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2006b: Observed boundary layer wind structure and balance in the hurricane core. Part II: Hurricane Mitch. J. Atmos. Sci., 63, 21942211, doi:10.1175/JAS3746.1.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58, 24852501, doi:10.1175/1520-0469(2001)058<2485:TDOBLJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kitabatake, N., and F. Fujibe, 2009: Relationship between surface wind fields and three-dimensional structures of tropical cyclones landfalling in the main islands of Japan. J. Meteor. Soc. Japan, 87, 959977, doi:10.2151/jmsj.87.959.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. R. Sampson, and M. DeMaria, 2005: An operational statistical typhoon intensity prediction scheme for the western North Pacific. Wea. Forecasting, 20, 688699, doi:10.1175/WAF863.1.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., T. Ushio, S. Shige, S. Kida, M. Kachi, and K. Okamoto, 2009: Verification of high-resolution satellite-based rainfall estimates around Japan using a gauge-calibrated ground-radar dataset. J. Meteor. Soc. Japan, 87A, 203222, doi:10.2151/jmsj.87A.203.

    • Search Google Scholar
    • Export Citation
  • Lin, Y. L., J. G. Han, D. W. Hamilton, and C. Y. Huang, 1999: Orographic influence on a drifting cyclone. J. Atmos. Sci., 56, 534562, doi:10.1175/1520-0469(1999)056<0534:OIOADC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, Y. L., D. B. Ensley, S. Chiao, and C. Y. Huang, 2002: Orographic influences on rainfall and track deflection associated with the passage of a tropical cyclone. Mon. Wea. Rev., 130, 29292950, doi:10.1175/1520-0493(2002)130<2929:OIORAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, Y. L., S. Y. Chen, C. M. Hill, and C. Y. Huang, 2005: Control parameters for the influence of a mesoscale mountain range on cyclone track continuity and deflection. J. Atmos. Sci., 62, 18491866, doi:10.1175/JAS3439.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y. L., N. C. Witcraft, and Y. H. Kuo, 2006: Dynamics of track deflection associated with the passage of tropical cyclones over a mesoscale mountain. Mon. Wea. Rev., 134, 35093538, doi:10.1175/MWR3263.1.

    • Search Google Scholar
    • Export Citation
  • Lonfat, M., F. D. Marks Jr., and S. S. Chen, 2004: Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) microwave imager: A global perspective. Mon. Wea. Rev., 132, 16451660, doi:10.1175/1520-0493(2004)132<1645:PDITCU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lonfat, M., R. Rogers, T. Marchok, and F. D. Marks, 2007: A parametric model for predicting hurricane rainfall. Mon. Wea. Rev., 135, 30863097, doi:10.1175/MWR3433.1.

    • Search Google Scholar
    • Export Citation
  • Loridan, T., E. Scherer, M. Dixon, E. Bellone, and S. Khare, 2014: Cyclone wind field asymmetries during extratropical transition in the western North Pacific. J. Appl. Meteor. Climatol., 53, 421428, doi:10.1175/JAMC-D-13-0257.1.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., 1985: Evolution and structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev., 113, 909930, doi:10.1175/1520-0493(1985)113<0909:EOTSOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., R. A. Houze, and J. F. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49, 919942, doi:10.1175/1520-0469(1992)049<0919:DAIOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1988: Environmental influences on hurricane intensification. J. Atmos. Sci., 45, 16781687, doi:10.1175/1520-0469(1988)045<1678:EIOHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., and R. F. Adler, 1993: An intercomparison of three satellite infrared rainfall techniques over Japan and surrounding waters. J. Appl. Meteor., 32, 357373, doi:10.1175/1520-0450(1993)032<0357:AIOTSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nong, S., 2000: An observational study of the genesis of concentric eyewall hurricanes. Preprints, 24th Conf. on Hurricanes and Tropical Meteorology, Fort Lauderdale, FL, Amer. Meteor. Soc., 3A.2. [Available online at https://ams.confex.com/ams/last2000/techprogram/paper_12608.htm.]

  • Peng, M. S., and R. T. Williams, 1990: Dynamics of vortex asymmetries and their influence on vortex motion on a β-plane. J. Atmos. Sci., 47, 19872003, doi:10.1175/1520-0469(1990)047<1987:DOVAAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peng, M. S., B.-F. Jeng, and R. T. Williams, 1999: A numerical study on tropical cyclone intensification. Part I: Beta effect and mean flow effect. J. Atmos. Sci., 56, 14041423, doi:10.1175/1520-0469(1999)056<1404:ANSOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., 2000: Loss of life in the United States associated with recent Atlantic tropical cyclones. Bull. Amer. Meteor. Soc., 81, 20652073, doi:10.1175/1520-0477(2000)081<2065:LOLITU>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., R. Rogers, and S. Lorsolo, 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Wea. Rev., 141, 29492969, doi:10.1175/MWR-D-12-00334.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., S. S. Chen, J. Tenerelli, and H. Willoughby, 2003: A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon. Wea. Rev., 131, 15771599, doi:10.1175//2546.1.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1983: The asymmetric boundary layer flow under a translating hurricane. J. Atmos. Sci., 40, 19841998, doi:10.1175/1520-0469(1983)040<1984:TABLFU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shige, S., S. Kida, H. Ashiwake, T. Kubota, and K. Aonashi, 2013: Improvement of TMI rain retrievals in mountainous areas. J. Appl. Meteor. Climatol., 52, 242254, doi:10.1175/JAMC-D-12-074.1.

    • Search Google Scholar
    • Export Citation
  • Shu, S., Y. Xu, J. Song, and Z. Yu, 2012: An observational study on distribution of precipitation associated with landfalling tropical cyclones affecting China. J. Trop. Meteor., 18, 275283.

    • Search Google Scholar
    • Export Citation
  • Tao, S., 1980: Heavy Rainfall in China (in Chinese). Science Press, 224 pp.

  • Ueno, M., 2007: Observational analysis and numerical evaluation of the effects of vertical wind shear on the rainfall asymmetry in the typhoon inner-core region. J. Meteor. Soc. Japan, 85, 115136, doi:10.2151/jmsj.85.115.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002a: Vortex Rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity, and kinetic energy budgets. J. Atmos. Sci., 59, 12131238, doi:10.1175/1520-0469(2002)059<1213:VRWIAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002b: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59, 12131238, doi:10.1175/1520-0469(2002)059<1213:VRWIAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and G. J. Holland, 1996a: Tropical cyclone motion and evolution in vertical shear. J. Atmos. Sci., 53, 33133332, doi:10.1175/1520-0469(1996)053<3313:TCMAEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and G. J. Holland, 1996b: The beta drift of baroclinic vortices. Part II: Diabatic vortices. J. Atmos. Sci., 53, 37373756, doi:10.1175/1520-0469(1996)053<3737:TBDOBV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and G. J. Holland, 1996c: The beta drift of baroclinic vortices. Part I: Adiabatic vortices. J. Atmos. Sci., 53, 411427, doi:10.1175/1520-0469(1996)053<0411:TBDOBV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., F. D. Marks Jr., and R. J. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41, 31893211, doi:10.1175/1520-0469(1984)041<3189:SAMCBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wingo, M. T., and D. J. Cecil, 2010: Effects of vertical wind shear on tropical cyclone precipitation. Mon. Wea. Rev., 138, 645662, doi:10.1175/2009MWR2921.1.

    • Search Google Scholar
    • Export Citation
  • Wong, M. L. M., and J. C. L. Chan, 2006: Tropical cyclone motion in response to land surface friction. J. Atmos. Sci., 63, 13241337, doi:10.1175/JAS3683.1.

    • Search Google Scholar
    • Export Citation
  • Wong, M. L. M., and J. C. L. Chan, 2007: Modeling the effects of land–sea roughness contrast on tropical cyclone winds. J. Atmos. Sci., 64, 32493264, doi:10.1175/JAS4027.1.

    • Search Google Scholar
    • Export Citation
  • Wu, C. C., 2001: Numerical simulation of Typhoon Gladys (1994) and its interaction with Taiwan terrain using the GFDL hurricane model. Mon. Wea. Rev., 129, 15331549, doi:10.1175/1520-0493(2001)129<1533:NSOTGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C. C., and Y. H. Kuo, 1999: Typhoons affecting Taiwan: Current understanding and future challenges. Bull. Amer. Meteor. Soc., 80, 6780, doi:10.1175/1520-0477(1999)080<0067:TATCUA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C. C., T. H. Yen, Y. H. Kuo, and W. Wang, 2002: Rainfall simulation associated with Typhoon Herb (1996) near Taiwan. Part I: The topographic effect. Wea. Forecasting, 17, 10011015, doi:10.1175/1520-0434(2003)017<1001:RSAWTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, D., K. Zhao, B. J. D. Jou, and W. C. Lee, 2013: Radar observation of precipitation asymmetries in tropical cyclones making landfall on East China coast. Trop. Cyclone Res. Rev.,2, 8195, doi:10.6057/2013TCRR02.02.

    • Search Google Scholar
    • Export Citation
  • Yeh, T. C., and R. L. Elsberry, 1993a: Interaction of typhoons with the Taiwan orography. Part I: Upstream track deflections. Mon. Wea. Rev., 121, 31933212, doi:10.1175/1520-0493(1993)121<3193:IOTWTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yeh, T. C., and R. L. Elsberry, 1993b: Interaction of typhoons with the Taiwan orography. Part II: Continuous and discontinuous tracks across the island. Mon. Wea. Rev., 121, 32133233, doi:10.1175/1520-0493(1993)121<3213:IOTWTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yu, Z., and H. Yu, 2012: Application of generalized convective vorticity vector in a rainfall process caused by a landfalling tropical depression. J. Trop. Meteor., 18, 422435.

    • Search Google Scholar
    • Export Citation
  • Yu, Z., H. Yu, P. Chen, C. Qian, and C. Yue, 2009: Verification of tropical cyclone–related satellite precipitation estimates in Mainland China. J. Appl. Meteor. Climatol., 48, 22272241, doi:10.1175/2009JAMC2143.1.

    • Search Google Scholar
    • Export Citation
  • Yu, Z., H. Yu, and S. Gao, 2010: Terrain impact on the precipitation of landfalling Typhoon Talim. J. Trop. Meteor., 16, 115124.

  • Zhang, Q., Q. Liu, and L. Wu, 2009: Tropical cyclone damages in China 1983–2006. Bull. Amer. Meteor. Soc., 90, 489495, doi:10.1175/2008BAMS2631.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1083 351 17
PDF Downloads 811 226 13