Characterization of Low-Level Winds of Southern and Coastal Delaware

Christopher P. Hughes Department of Geography, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware

Search for other papers by Christopher P. Hughes in
Current site
Google Scholar
PubMed
Close
and
Dana E. Veron Department of Geography, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware

Search for other papers by Dana E. Veron in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Winds across the Delaware Peninsula transport pollutants, modify the temperature, and play a critical role within the state’s agricultural and tourism industries. The low-level winds inland and near Delaware’s coastline are characterized using observations from eight meteorological stations operated by the Delaware Environmental Observing System and the National Data Buoy Center from 2005 through 2012. The low-level winds have pronounced dominant directions during the summer (southwest/southeast) and winter (northwest) seasons, with the greatest spatial and temporal variability occurring in the summer. This inhomogeneity was further investigated with a set of simulations of the low-level winds over the Delaware Bay and surrounding landmass using the Weather Research and Forecasting Model for a subset of days from 2006 through 2012. The model was run with three nests, with the inner nest having a 2-km horizontal resolution. The randomly selected days were organized by synoptic type and season. Mesoscale wind events such as the sea-breeze circulation introduce significant variability in the local wind field of coastal Delaware—an effect that is seen in both observed and modeled data. Southerly winds off Delaware’s coast frequently shift counterclockwise up the Delaware Bay in alignment with the bay coastline. Long-term data from station B44009 (1984–2012) indicate a May decrease (0.03 m s−1 yr−1; significance p = 0.026) and an October increase (0.04 m s−1 yr−1; p = 0.006) of the mean wind speed. Results suggest that the local wind regime is multifaceted and contains significant seasonal, diurnal, and spatial variations.

Corresponding author address: Dana E. Veron, Dept. of Geography, College of Earth, Ocean, and Environment, University of Delaware, Newark, DE 19716. E-mail: dveron@udel.edu

Abstract

Winds across the Delaware Peninsula transport pollutants, modify the temperature, and play a critical role within the state’s agricultural and tourism industries. The low-level winds inland and near Delaware’s coastline are characterized using observations from eight meteorological stations operated by the Delaware Environmental Observing System and the National Data Buoy Center from 2005 through 2012. The low-level winds have pronounced dominant directions during the summer (southwest/southeast) and winter (northwest) seasons, with the greatest spatial and temporal variability occurring in the summer. This inhomogeneity was further investigated with a set of simulations of the low-level winds over the Delaware Bay and surrounding landmass using the Weather Research and Forecasting Model for a subset of days from 2006 through 2012. The model was run with three nests, with the inner nest having a 2-km horizontal resolution. The randomly selected days were organized by synoptic type and season. Mesoscale wind events such as the sea-breeze circulation introduce significant variability in the local wind field of coastal Delaware—an effect that is seen in both observed and modeled data. Southerly winds off Delaware’s coast frequently shift counterclockwise up the Delaware Bay in alignment with the bay coastline. Long-term data from station B44009 (1984–2012) indicate a May decrease (0.03 m s−1 yr−1; significance p = 0.026) and an October increase (0.04 m s−1 yr−1; p = 0.006) of the mean wind speed. Results suggest that the local wind regime is multifaceted and contains significant seasonal, diurnal, and spatial variations.

Corresponding author address: Dana E. Veron, Dept. of Geography, College of Earth, Ocean, and Environment, University of Delaware, Newark, DE 19716. E-mail: dveron@udel.edu
Save
  • Atkinson, L. P., J. L. Blanco, and R. Chekuru, 2013: Final report for task 2.0 extreme wind events and design parameters. U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind and Water Power Program Final Rep., 34 pp. [Available online at http://www.ceoe.udel.edu/windpower/resources/ODU-final-report-28-June-2013.pdf.]

  • Azorin-Molina, C., S. Tijm, E. E. Ebert, S. M. Vicente-Serrano, and M. J. Estrela, 2014: Sea breeze thunderstorms in the eastern Iberian Peninsula. Neighborhood verification of HIRLAM and HARMONIE precipitation forecasts. Atmos. Res., 139, 101115, doi:10.1016/j.atmosres.2014.01.010.

    • Search Google Scholar
    • Export Citation
  • Carvalho, D., A. Rocha, M. Gómez-Gesteira, and C. Silva Santos, 2014: WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal. Appl. Energy, 117, 116126, doi:10.1016/j.apenergy.2013.12.001.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colby, F. P., Jr., 2004: Simulation of the New England sea breeze: The effect of grid spacing. Wea. Forecasting, 19, 277285, doi:10.1175/1520-0434(2004)019<0277:SOTNES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colle, B., and D. Novak, 2010: The New York Bight jet: Climatology and dynamical evolution. Mon. Wea. Rev., 138, 23852404, doi:10.1175/2009MWR3231.1.

    • Search Google Scholar
    • Export Citation
  • Dowtin, A. L., 2012: Developing a drought climatology for Delaware (1948–2005). M.S. thesis, Dept. of Geography, University of Delaware, 103 pp. [Available online at http://sites.udel.edu/delaware-water-watch/files/2014/06/Dowtin2012_Developing-a-Drought-Climatology-for-Delaware-1948-2012-vvwxrr.pdf.]

  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dvorak, M. J., C. L. Archer, and M. J. Jacobson, 2010: California offshore wind energy potential. Renewable Energy, 35, 12441254, doi:10.1016/j.renene.2009.11.022.

    • Search Google Scholar
    • Export Citation
  • Ellis, A., and D. Leathers, 1996: A synoptic climatological approach to the analysis of lake-effect snowfall: Potential forecasting applications. Wea. Forecasting, 11, 216229, doi:10.1175/1520-0434(1996)011<0216:ASCATT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Epifanio, C. E., A. K. Masse, and R. W. Garvine, 1989: Transport of blue crab larvae by surface currents off Delaware Bay, USA. Mar. Ecol. Prog. Ser., 54, 3541, doi:10.3354/meps054035.

    • Search Google Scholar
    • Export Citation
  • Fealy, R., and J. Sweeney, 2007: Identification of frequency changes in synoptic circulation types and consequences for glacier mass balance in Norway. Norw. J. Geogr., 61, 7691, doi:10.1080/00291950701374328.

    • Search Google Scholar
    • Export Citation
  • Garvine, R. W., and W. Kempton, 2008: Assessing the wind field over the continental shelf as a resource for electric power. J. Mar. Res., 66, 751773, doi:10.1357/002224008788064540.

    • Search Google Scholar
    • Export Citation
  • Gilchrist, J., 2013: A radar analysis of the Delaware sea/bay breeze. M.S. thesis, School of Marine Science and Policy, University of Delaware, 89 pp. [Available online at http://udspace.udel.edu/handle/19716/13023.]

  • Hill, C. M., P. J. Fitzpatrick, C. H. Corbin, Y. H. Lau, and S. K. Bhate, 2010: Summertime precipitation regimes associated with the sea breeze and land breeze in southern Mississippi and eastern Louisiana. Wea. Forecasting, 25, 17551779, doi:10.1175/2010WAF2222340.1.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. P., 2011: The climatology of the Delaware Bay/sea breeze. M.S. thesis, School of Marine Science and Policy, University of Delaware, 129 pp. [Available online at http://udspace.udel.edu/handle/19716/10659.]

  • Hurley, P. J., W. L. Physick, and A. K. Luhar, 2005: TAPM: A practical approach to prognostic meteorological and air pollution modelling. Environ. Modell. Software, 20, 737752, doi:10.1016/j.envsoft.2004.04.006.

    • Search Google Scholar
    • Export Citation
  • Husar, R. B., R. L. Poirot, and N. Frank, 2007: Exceptional air pollution events: Regional and intercontinental dust and smoke. 2007 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A53C-1355.

  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jimenez, B., F. Durante, B. Lange, T. Kreutzer, and J. Tambke, 2007: Offshore wind resource assessment with WAsP and MM5: Comparative study for the German Bight. Wind Energy, 10, 121134, doi:10.1002/we.212.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. F. González-Rouco, E. García-Bustamante, J. Navarro, J. P. Montávez, J. Vilà-Guerau de Arellano, J. Dudhia, and A. Muñoz-Roldan, 2010: Surface wind regionalization over complex terrain: Evaluation and analysis of a high-resolution WRF simulation. J. Appl. Meteor. Climatol., 49, 268287, doi:10.1175/2009JAMC2175.1.

    • Search Google Scholar
    • Export Citation
  • Jones, G. V., and R. E. Davis, 2000: Using a synoptic climatological approach to understand climate–viticulture relationships. Int. J. Climatol., 20, 813837, doi:10.1002/1097-0088(20000630)20:8<813::AID-JOC495>3.0.CO;2-W.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 24, Amer. Meteor. Soc., 165–170.

  • Kain, J. S., S. R. Dembek, S. J. Weiss, J. L. Case, J. J. Levit, and R. A. Sobash, 2010: Extracting unique information from high-resolution forecast models: Monitoring selected fields and phenomena every time step. Wea. Forecasting, 25, 15361542, doi:10.1175/2010WAF2222430.1.

    • Search Google Scholar
    • Export Citation
  • Kalkstein, L. S., and P. Corrigan, 1986: A synoptic climatological approach for geographic analysis: Assessment of sulfur dioxide concentrations. Ann. Assoc. Amer. Geogr., 76, 381395, doi:10.1111/j.1467-8306.1986.tb00126.x.

    • Search Google Scholar
    • Export Citation
  • Kalkstein, L. S., G. Tan, and J. A. Skindlov, 1987: An evaluation of three clustering procedures for use in synoptic climatological classification. J. Climate Appl. Meteor., 26, 717730, doi:10.1175/1520-0450(1987)026<0717:AEOTCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalkstein, L. S., P. C. Dunne, and R. S. Vose, 1990: Detection of climate change in the western North American Arctic using a synoptic climatological approach. J. Climate, 3, 11531167, doi:10.1175/1520-0442(1990)003<1153:DOCCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khan, B. A., 2010: Sea breeze circulation in the Auckland region: Observational data analysis and numerical modeling. Ph.D. thesis, University of Canterbury, 262 pp. [Available online at http://ir.canterbury.ac.nz/handle/10092/4476.]

  • Kyselý, J., R. Huth, and J. Kim, 2010: Evaluating heat-related mortality in Korea by objective classifications of ‘air masses.’ Int. J. Climatol., 30, 14841501, doi:10.1002/joc.1994.

    • Search Google Scholar
    • Export Citation
  • Leathers, D., and A. Ellis, 1996: Synoptic mechanisms associated with snowfall increase to the lee of Lakes Erie and Ontario. Int. J. Climatol., 16, 11171135, doi:10.1002/(SICI)1097-0088(199610)16:10<1117::AID-JOC80>3.0.CO;2-4.

    • Search Google Scholar
    • Export Citation
  • Lennon, G., 2010: Presentation to Delaware Renewable Energy Task Force. NRG Energy, Inc., Presentation Slides, 13 pp. [Available online at http://www.dnrec.delaware.gov/energy/information/Lists/Delaware%20Renewable%20Energy%20Task%20Force%20Calendar/Attachments/5/NRG%20Presentation%20on%20Utility%20Scale%20Solar.pdf.]

  • Luther, G. W., S. Ma, R. Trouwborst, B. Glazer, M. Blickley, R. W. Scarborough, and M. G. Mensinger, 2004: The roles of anoxia, H2S, and storm events in fish kills of dead-end canals of Delaware inland bays. Estuaries, 27, 551560, doi:10.1007/BF02803546.

    • Search Google Scholar
    • Export Citation
  • Maurmeyer, E. M., 1978: Geomorphology and evolution of transgressive estuarine washover barriers along the western shore of Delaware Bay. Ph.D. thesis, University of Delaware, 546 pp.

  • Mesinger, F., G. DiMego, and E. Kalnay, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Miller, S. T. K., B. D. Keim, R. W. Talbot, and H. Mao, 2003: Sea breeze: Structure, forecasting, and impacts. Rev. Geophys., 41, 1011, doi:10.1029/2003RG000124.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • MMI Engineering, and Atmospheric and Environmental Research, 2012: Prediction of wind energy resources on the outer continental shelf with weather models. Bureau of Ocean Energy Management Task 2 Final Rep. M11PC00017, 57 pp. [Available online at http://www.boem.gov/uploadedFiles/BOEM/Environmental_Stewardship/Environmental_Studies/Renewable_Energy/M11PC00017_Task2_FinalReport.pdf.]

  • Moffatt, J., and F. Nichol, 2007: Sediment management plan: Rehoboth Bay, Sussex County, Delaware. DNREC Final Rep., 132 pp. [Available online at http://www.dnrec.delaware.gov/swc/Shoreline/Documents/Regional%20Sediment%20Management%20Plan%20-%20Rehoboth%20Bay.pdf.]

  • Monaldo, F. M., X. Lui, W. Pichel, and C. Jackson, 2014: Ocean wind speed climatology from spaceborne SAR imagery. Bull. Amer. Meteor. Soc., 95, 565569, doi:10.1175/BAMS-D-12-00165.1.

    • Search Google Scholar
    • Export Citation
  • Münchow, A., and R. Garvine, 1993: Buoyancy and wind forcing of a coastal current. J. Mar. Res., 51, 293322, doi:10.1357/0022240933223747.

    • Search Google Scholar
    • Export Citation
  • Muscarella, P., N. Barton, B. L. Lipphardt Jr., D. E. Veron, and A. D. Kirwan Jr., 2011: Surface currents and winds at the Delaware Bay mouth. Cont. Shelf Res., 31, 12821293, doi:10.1016/j.csr.2011.05.003.

    • Search Google Scholar
    • Export Citation
  • Nawri, N., H. Björnsson, K. Jónasson, and G. N. Petersen, 2012: Evaluation of WRF mesoscale model simulations of surface wind over Iceland. Icelandic Meteorological Office Rep. VÍ 2012-010, 44 pp. [Available online at http://en.vedur.is/media/2012_010_web.pdf.]

  • Otkin, J. A., and T. J. Greenwald, 2008: Comparison or WRF model-simulated and MODIS-derived cloud data. Mon. Wea. Rev., 136, 19571970, doi:10.1175/2007MWR2293.1.

    • Search Google Scholar
    • Export Citation
  • Reinard, M. S., K. Adou, J. M. Martini, and M. V. Johnston, 2007: Source characterization and identification by real-time single particle mass spectrometry. Atmos. Environ., 41, 93979409, doi:10.1016/j.atmosenv.2007.09.001.

    • Search Google Scholar
    • Export Citation
  • Salamanca, F., A. Martilli, M. Tewari, and F. Chen, 2011: A study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with WRF. J. Appl. Meteor. Climatol., 50, 11071128, doi:10.1175/2010JAMC2538.1.

    • Search Google Scholar
    • Export Citation
  • Samet, J., S. Zeger, J. Kelsall, J. Xu, and L. Kalkstein, 1998: Does weather confound or modify the association of particulate air pollution with mortality? An analysis of the Philadelphia data, 1973–1980. Environ. Res., 77, 919, doi:10.1006/enrs.1997.3821.

    • Search Google Scholar
    • Export Citation
  • Sathe, A., and W. Bierbooms, 2007: Influence of different wind profiles due to varying atmospheric stability on the fatigue life of wind turbines. J. Phys. Conf. Ser., 75, 012056, doi:10.1088/1742-6596/75/1/012056.

    • Search Google Scholar
    • Export Citation
  • Schofield, O., and Coauthors, 2008: The decadal view of the Mid-Atlantic Bight for the COOL room: Is our coastal system changing? Oceanography, 21, 108117, doi:10.5670/oceanog.2008.08.

    • Search Google Scholar
    • Export Citation
  • Scully, M. E., 2010: The importance of climate variability to wind-driven modulation of hypoxia in Chesapeake Bay. J. Phys. Oceanogr., 40, 14351440, doi:10.1175/2010JPO4321.1.

    • Search Google Scholar
    • Export Citation
  • Shimada, S., and T. Ohsawa, 2011: Accuracy and characteristics of offshore wind speeds simulated by WRF. SOLA, 7, 2124, doi:10.2151/sola.2011-006.

    • Search Google Scholar
    • Export Citation
  • Shimada, S., T. Ohsawa, S. Serizawa, and I. Yoneda, 2009: Characteristics of offshore winds at Shirahama Oceanographic Observatory. Proc. ISOPE 2009, Osaka, Japan, ISOPE, 424–428. [Available online at http://e-book.lib.sjtu.edu.cn/isope2009/data/papers/2009-TPC-407.pdf.]

  • Silva, J., C. Ribeiro, and R. Guedes, 2007: Roughness length classification of Corine Land Cover classes. European Wind Energy Conf., Milan, Italy, EWEA, 10 pp. [Available online at http://www.ewea.org/ewec2007/allfiles2/545_Ewec2007fullpaper.pdf.]

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Woods, B. K., T. Nehrkorn, and J. M. Henderson, 2013: A downscaled wind climatology on the outer continental shelf. J. Appl. Meteor. Climatol., 52, 18781890, doi:10.1175/JAMC-D-12-0216.1.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., S. Zieger, and A. V. Babanin, 2011: Global trends in wind speed and wave height. Science, 332, 451455, doi:10.1126/science.1197219.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 375 98 8
PDF Downloads 320 48 3