Mean and Turbulent Flow Downstream of a Low-Intensity Fire: Influence of Canopy and Background Atmospheric Conditions

Michael T. Kiefer Department of Geography, Michigan State University, East Lansing, Michigan

Search for other papers by Michael T. Kiefer in
Current site
Google Scholar
PubMed
Close
,
Warren E. Heilman Northern Research Station, U.S. Department of Agriculture Forest Service, Lansing, Michigan

Search for other papers by Warren E. Heilman in
Current site
Google Scholar
PubMed
Close
,
Shiyuan Zhong Department of Geography, Michigan State University, East Lansing, Michigan

Search for other papers by Shiyuan Zhong in
Current site
Google Scholar
PubMed
Close
,
Joseph J. Charney Northern Research Station, U.S. Department of Agriculture Forest Service, Lansing, Michigan

Search for other papers by Joseph J. Charney in
Current site
Google Scholar
PubMed
Close
, and
Xindi Bian Northern Research Station, U.S. Department of Agriculture Forest Service, Lansing, Michigan

Search for other papers by Xindi Bian in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the sensitivity of mean and turbulent flow in the planetary boundary layer and roughness sublayer to a low-intensity fire and evaluates whether the sensitivity is dependent on canopy and background atmospheric properties. The ARPS-CANOPY model, a modified version of the Advanced Regional Prediction System (ARPS) model with a canopy parameterization, is utilized for this purpose. A series of numerical experiments are conducted to evaluate whether the ability of the fire to alter downstream wind, temperature, turbulent kinetic energy (TKE), and vertical heat flux differs between forested and open areas, sparse and dense forests, weak and strong background flow, and neutral and convective background stability. Analysis of all experiments shows that, in general, mean and turbulent flow both prior to and during a low-intensity fire is damped in the presence of a canopy. Greater sensitivity to the fire is found in cases with strong ambient wind speed than in cases with quiescent or weak wind speed. Furthermore, sensitivity of downstream atmospheric conditions to the fire is shown to be strongest with a neutrally stratified background. An analysis of the TKE budget reveals that both buoyancy and wind shear contribute to TKE production during the period of time in which the fire conditions are applied to the model. On the basis of the results of the ARPS simulations, caution is advised when applying ARPS-simulation results to predictions of smoke transport and dispersion: smoke-model users should consider whether canopy impacts on the atmosphere are accounted for and whether neutral stratification is assumed.

Corresponding author address: Michael Kiefer, Michigan State University, Geography Bldg., 673 Auditorium Rd. Rm. 203, East Lansing, MI 48824. E-mail: mtkiefer@msu.edu

Abstract

This study examines the sensitivity of mean and turbulent flow in the planetary boundary layer and roughness sublayer to a low-intensity fire and evaluates whether the sensitivity is dependent on canopy and background atmospheric properties. The ARPS-CANOPY model, a modified version of the Advanced Regional Prediction System (ARPS) model with a canopy parameterization, is utilized for this purpose. A series of numerical experiments are conducted to evaluate whether the ability of the fire to alter downstream wind, temperature, turbulent kinetic energy (TKE), and vertical heat flux differs between forested and open areas, sparse and dense forests, weak and strong background flow, and neutral and convective background stability. Analysis of all experiments shows that, in general, mean and turbulent flow both prior to and during a low-intensity fire is damped in the presence of a canopy. Greater sensitivity to the fire is found in cases with strong ambient wind speed than in cases with quiescent or weak wind speed. Furthermore, sensitivity of downstream atmospheric conditions to the fire is shown to be strongest with a neutrally stratified background. An analysis of the TKE budget reveals that both buoyancy and wind shear contribute to TKE production during the period of time in which the fire conditions are applied to the model. On the basis of the results of the ARPS simulations, caution is advised when applying ARPS-simulation results to predictions of smoke transport and dispersion: smoke-model users should consider whether canopy impacts on the atmosphere are accounted for and whether neutral stratification is assumed.

Corresponding author address: Michael Kiefer, Michigan State University, Geography Bldg., 673 Auditorium Rd. Rm. 203, East Lansing, MI 48824. E-mail: mtkiefer@msu.edu
Save
  • Chou, M.-D., 1990: Parameterization for the absorption of solar radiation by O2 and CO2 with application to climate studies. J. Climate, 3, 209217, doi:10.1175/1520-0442(1990)003<0209:PFTAOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., 1992: A solar radiation model for climate studies. J. Atmos. Sci., 49, 762772, doi:10.1175/1520-0469(1992)049<0762:ASRMFU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, 85 pp. [Available from NASA Center for Aerospace Information, 800 Elkridge Landing Rd., Linthicum Heights, MD 21090-2934.]

  • Clements, C. B., and Coauthors, 2007: Observing the dynamics of wildland grass fires: FireFlux—A field validation experiment. Bull. Amer. Meteor. Soc., 88, 13691382, doi:10.1175/BAMS-88-9-1369.

    • Search Google Scholar
    • Export Citation
  • Cunningham, P., S. L. Goodrick, M. Y. Hussaini, and R. R. Linn, 2005: Coherent vortical structures in numerical simulations of buoyant plumes from wildland fires. Int. J. Wildland Fire, 14, 6175, doi:10.1071/WF04044.

    • Search Google Scholar
    • Export Citation
  • Dupont, S., and Y. Brunet, 2008: Influence of foliar density profile on canopy flow: A large-eddy simulation study. Agric. For. Meteor., 148, 976990, doi:10.1016/j.agrformet.2008.01.014.

    • Search Google Scholar
    • Export Citation
  • Dupont, S., and Y. Brunet, 2009: Coherent structures in canopy edge flow: A large-eddy simulation study. J. Fluid Mech., 630, 93128, doi:10.1017/S0022112009006739.

    • Search Google Scholar
    • Export Citation
  • Dwyer, M. J., E. G. Patton, and R. H. Shaw, 1997: Turbulent kinetic energy budgets from a large eddy simulation of airflow above and within a forest canopy. Bound.-Layer Meteor., 84, 2343, doi:10.1023/A:1000301303543.

    • Search Google Scholar
    • Export Citation
  • Fast, J. D., and R. C. Easter, 2006: A Lagrangian particle dispersion model compatible with WRF. Proc. Seventh Annual WRF User’s Workshop, Boulder, CO, NCAR, 5 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/workshops/WS2006/abstracts/PSession06/P6_02_Fast.pdf.]

  • Finnigan, J. J., 2000: Turbulence in plant canopies. Annu. Rev. Fluid Mech., 32, 519571, doi:10.1146/annurev.fluid.32.1.519.

  • Heilman, W. E., and J. D. Fast, 1992: Simulations of horizontal roll vortex development above lines of extreme surface heating. Int. J. Wildland Fire, 2, 5568, doi:10.1071/WF9920055.

    • Search Google Scholar
    • Export Citation
  • Heilman, W. E., and Coauthors, 2013: Development of modeling tools for predicting smoke dispersion from low-intensity fires. Joint Fire Science Plan Study Final Rep. 09-1-04-1, 64 pp.

  • Hiers, J. K., R. Ottmar, B. W. Butler, C. Clements, R. Vihnanek, M. B. Dickinson, and J. O’Brien, 2009: An overview of the Prescribed Fire Combustion and Atmospheric Dynamics Research Experiment (Rx-CADRE). Proc. Fourth Int. Fire Ecology and Management Congress: Fire as a Global Process, Savannah, GA, Association for Fire Ecology.

  • Kanda, M., and M. Hino, 1994: Organized structures in developing turbulent flow within and above a plant canopy, using a large eddy simulation. Bound.-Layer Meteor., 68, 237257, doi:10.1007/BF00705599.

    • Search Google Scholar
    • Export Citation
  • Kiefer, M. T., and S. Zhong, 2013: The effect of sidewall forest canopies on the formation of cold-air pools: A numerical study. J. Geophys. Res. Atmos., 118, 59655978, doi:10.1002/jgrd.50509.

    • Search Google Scholar
    • Export Citation
  • Kiefer, M. T., Y.-L. Lin, and J. J. Charney, 2008: A study of two-dimensional dry convective plume modes with variable critical level height. J. Atmos. Sci., 65, 448469, doi:10.1175/2007JAS2301.1.

    • Search Google Scholar
    • Export Citation
  • Kiefer, M. T., M. D. Parker, and J. J. Charney, 2009: Regimes of dry convection above wildfires: Idealized numerical simulations and dimensional analysis. J. Atmos. Sci., 66, 806836, doi:10.1175/2008JAS2896.1.

    • Search Google Scholar
    • Export Citation
  • Kiefer, M. T., S. Zhong, W. E. Heilman, J. J. Charney, and X. Bian, 2013: Evaluation of an ARPS-based canopy flow modeling system for use in future operational smoke prediction efforts. J. Geophys. Res. Atmos., 118, 61756188, doi:10.1002/jgrd.50491.

    • Search Google Scholar
    • Export Citation
  • Kiefer, M. T., and Coauthors, 2014: Multiscale simulation of a prescribed fire event in the New Jersey Pine Barrens using ARPS-CANOPY. J. Appl. Meteor. Climatol., 53, 793812, doi:10.1175/JAMC-D-13-0131.1.

    • Search Google Scholar
    • Export Citation
  • Linn, R. R., and P. Cunningham, 2005: Numerical simulations of grass fires using a coupled atmosphere–fire model: Basic fire behavior and dependence on wind speed. J. Geophys. Res., 110, D13107, doi:10.1029/2004JD005597.

    • Search Google Scholar
    • Export Citation
  • Melvin, M. A., 2012: 2012 National prescribed fire use survey report. Coalition of Prescribed Fire Councils Inc. Tech. Rep. 01-12, 24 pp. [Available online at http://www.stateforesters.org/sites/default/files/publication-documents/2012_National_Prescribed_Fire_Survey.pdf.]

  • Meyers, T. P., and D. D. Baldocchi, 1991: The budgets of turbulent kinetic energy and Reynolds stress within and above a deciduous forest. Agric. For. Meteor., 53, 207222, doi:10.1016/0168-1923(91)90058-X.

    • Search Google Scholar
    • Export Citation
  • Michioka, T., and F. K. Chow, 2008: High-resolution large-eddy simulations of scalar transport in atmospheric boundary layer flow over complex terrain. J. Appl. Meteor. Climatol., 47, 31503169, doi:10.1175/2008JAMC1941.1.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and R. H. Johnson, 2004: Structures and dynamics of quasi–2D mesoscale convective systems. J. Atmos. Sci., 61, 545567, doi:10.1175/1520-0469(2004)061<0545:SADOQM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pimont, F., J. L. Dupuy, R. R. Linn, and S. Dupont, 2009: Validation of FIRETEC wind-flows over a canopy and a fuel-break. Int. J. Wildland Fire, 18, 775790, doi:10.1071/WF07130.

    • Search Google Scholar
    • Export Citation
  • Pimont, F., J. L. Dupuy, R. R. Linn, and S. Dupont, 2011: Impacts of tree canopy structure on wind flows and fire propagation simulated with FIRETEC. Ann. For. Sci., 68, 523530, doi:10.1007/s13595-011-0061-7.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, and J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Regional WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/docs/arw_v2.pdf.]

  • Stohl, A., C. Forster, A. Frank, P. Seibert, and G. Wotawa, 2005: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys., 5, 24612474, doi:10.5194/acp-5-2461-2005.

    • Search Google Scholar
    • Export Citation
  • Sun, H., T. L. Clark, R. B. Stull, and T. A. Black, 2006: Two-dimensional simulation of airflow and carbon dioxide transport over a forested mountain. Part I: Interactions between thermally-forced circulations. Agric. For. Meteor., 140, 338351, doi:10.1016/j.agrformet.2006.03.023.

    • Search Google Scholar
    • Export Citation
  • Sun, R., M. A. Jenkins, S. K. Krueger, W. Mell, and J. J. Charney, 2006: An evaluation of fire-plume properties simulated with the Fire Dynamics Simulator (FDS) and the Clark coupled wildfire model. Can. J. For. Res., 36, 28942908, doi:10.1139/x06-138.

    • Search Google Scholar
    • Export Citation
  • Sun, R., S. K. Krueger, M. A. Jenkins, M. A. Zulauf, and J. J. Charney, 2009: The importance of fire-atmosphere coupling and boundary layer turbulence to wildfire spread. Int. J. Wildland Fire, 18, 5060, doi:10.1071/WF07072.

    • Search Google Scholar
    • Export Citation
  • Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmosphere simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161193, doi:10.1007/s007030070003.

    • Search Google Scholar
    • Export Citation
  • Xue, M., K. K. Droegemeier, V. Wong, A. Shapiro, K. Brewster, F. Carr, D. Weber, Y. Liu, and D. Wang, 2001: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmosphere simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76, 143165, doi:10.1007/s007030170027.

    • Search Google Scholar
    • Export Citation
  • Xue, M., D. Wang, J. Gao, K. Brewster, and K. K. Droegemeier, 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys., 82, 139170. [Available online at http://kkd.ou.edu/ARPSPaperIII.pdf.]

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 407 119 5
PDF Downloads 385 71 5