Variability of CONUS Lightning in 2003–12 and Associated Impacts

William J. Koshak * NASA Marshall Space Flight Center, Huntsville, Alabama

Search for other papers by William J. Koshak in
Current site
Google Scholar
PubMed
Close
,
Kenneth L. Cummins The University of Arizona, Tucson, Arizona

Search for other papers by Kenneth L. Cummins in
Current site
Google Scholar
PubMed
Close
,
Dennis E. Buechler University of Alabama, Huntsville, Alabama

Search for other papers by Dennis E. Buechler in
Current site
Google Scholar
PubMed
Close
,
Brian Vant-Hull City College of New York, New York City, New York

Search for other papers by Brian Vant-Hull in
Current site
Google Scholar
PubMed
Close
,
Richard J. Blakeslee * NASA Marshall Space Flight Center, Huntsville, Alabama

Search for other papers by Richard J. Blakeslee in
Current site
Google Scholar
PubMed
Close
,
Earle R. Williams Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Earle R. Williams in
Current site
Google Scholar
PubMed
Close
, and
Harold S. Peterson ** Universities Space Research Association, Huntsville, Alabama

Search for other papers by Harold S. Peterson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Changes in lightning characteristics over the conterminous United States (CONUS) are examined to support the National Climate Assessment (NCA) program. Details of the variability of cloud-to-ground (CG) lightning characteristics over the decade 2003–12 are provided using data from the National Lightning Detection Network (NLDN). Changes in total (CG + cloud flash) lightning across part of the CONUS during the decade are provided using satellite Lightning Imaging Sensor (LIS) data. The variations in NLDN-derived CG lightning are compared with available statistics on lightning-caused impacts to various U.S. economic sectors. Overall, a downward trend in total CG lightning count is found for the decadal period; the 5-yr mean NLDN CG count decreased by 12.8% from 25 204 345.8 (2003–07) to 21 986 578.8 (2008–12). There is a slow upward trend in the fraction and number of positive-polarity CG lightning, however. Associated lightning-caused fatalities and injuries, and the number of lightning-caused wildland fires and burn acreage also trended downward, but crop and personal-property damage costs increased. The 5-yr mean LIS total lightning changed little over the decadal period. Whereas the CONUS-averaged dry-bulb temperature trended upward during the analysis period, the CONUS-averaged wet-bulb temperature (a variable that is better correlated with lightning activity) trended downward. A simple linear model shows that climate-induced changes in CG lightning frequency would likely have a substantial and direct impact on humankind (e.g., a long-term upward trend of 1°C in wet-bulb temperature corresponds to approximately 14 fatalities and over $367 million in personal-property damage resulting from lightning).

Denotes Open Access content.

Corresponding author address: William Koshak, Earth Science Office, NASA Marshall Space Flight Center, Huntsville, AL 35805. E-mail: william.koshak@nasa.gov

Publisher’s Note: This article was revised on 17 March 2015 to include the open access designation that was missing when originally published.

Abstract

Changes in lightning characteristics over the conterminous United States (CONUS) are examined to support the National Climate Assessment (NCA) program. Details of the variability of cloud-to-ground (CG) lightning characteristics over the decade 2003–12 are provided using data from the National Lightning Detection Network (NLDN). Changes in total (CG + cloud flash) lightning across part of the CONUS during the decade are provided using satellite Lightning Imaging Sensor (LIS) data. The variations in NLDN-derived CG lightning are compared with available statistics on lightning-caused impacts to various U.S. economic sectors. Overall, a downward trend in total CG lightning count is found for the decadal period; the 5-yr mean NLDN CG count decreased by 12.8% from 25 204 345.8 (2003–07) to 21 986 578.8 (2008–12). There is a slow upward trend in the fraction and number of positive-polarity CG lightning, however. Associated lightning-caused fatalities and injuries, and the number of lightning-caused wildland fires and burn acreage also trended downward, but crop and personal-property damage costs increased. The 5-yr mean LIS total lightning changed little over the decadal period. Whereas the CONUS-averaged dry-bulb temperature trended upward during the analysis period, the CONUS-averaged wet-bulb temperature (a variable that is better correlated with lightning activity) trended downward. A simple linear model shows that climate-induced changes in CG lightning frequency would likely have a substantial and direct impact on humankind (e.g., a long-term upward trend of 1°C in wet-bulb temperature corresponds to approximately 14 fatalities and over $367 million in personal-property damage resulting from lightning).

Denotes Open Access content.

Corresponding author address: William Koshak, Earth Science Office, NASA Marshall Space Flight Center, Huntsville, AL 35805. E-mail: william.koshak@nasa.gov

Publisher’s Note: This article was revised on 17 March 2015 to include the open access designation that was missing when originally published.

Save
  • Albrecht, R. I., C. A. Morales, and M. A. F. S. Dias, 2011: Electrification of precipitating systems over the Amazon: Physical processes of thunderstorm development. J. Geophys. Res., 116, D08209, doi:10.1029/2010JD014756.

    • Search Google Scholar
    • Export Citation
  • Baker, M. B., H. J. Christian, and J. Latham, 1995: A computational study of the relationships linking lightning frequency and other thundercloud parameters. Quart. J. Roy. Meteor. Soc., 121, 15251548, doi:10.1002/qj.49712152703.

    • Search Google Scholar
    • Export Citation
  • Baker, M. B., A. M. Blyth, H. J. Christian, J. Latham, K. L. Miller, and A. M. Gadian, 1999: Relationships between lightning activity and various thundercloud parameters: Satellite and modeling studies. Atmos. Res., 51, 221236, doi:10.1016/S0169-8095(99)00009-5.

    • Search Google Scholar
    • Export Citation
  • Biagi, C. J., K. L. Cummins, K. E. Kehoe, and E. P. Krider, 2007: National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003–2004. J. Geophys. Res., 112, D05208, doi:10.1029/2006JD007341.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., K. L. Cummins, H. J. Christian, and S. J. Goodman, 2001: Combined satellite- and surface-based estimation of the intracloud–cloud-to-ground lightning ratio over the continental United States. Mon. Wea. Rev., 129, 108122, doi:10.1175/1520-0493(2001)129<0108:CSASBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., W. J. Koshak, and R. J. Blakeslee, 2002: Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part I: Predicted diurnal variability. J. Atmos. Oceanic Technol., 19, 13181332, doi:10.1175/1520-0426(2002)019<1318:PAOTOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bolin, B., and Coauthors, 1995: IPCC second assessment: Climate change 1995. World Meteorological Organization and U.N. Environment Programme Intergovermental Panel on Climate Change Rep., 73 pp. [Available online at http://ipcc.ch/pdf/climate-changes-1995/ipcc-2nd-assessment/2nd-assessment-en.pdf.]

  • Buechler, D. E., W. J. Koshak, H. J. Christian, and S. J. Goodman, 2014: Assessing the performance of the Lightning Imaging Sensor (LIS) using deep convective clouds. Atmos. Res., 135–136, 397403, doi:10.1016/j.atmosres.2012.09.008.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 1998: Electrical and multiparameter radar observations of a severe hailstorm. J. Geophys. Res., 103, 13 97914 000, doi:10.1029/97JD02626.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., S. A. Rutledge, and W. A. Petersen, 2003: The relationship between severe storm reports and cloud-to-ground lightning polarity in the contiguous United States from 1989 to 1998. Mon. Wea. Rev., 131, 12111228, doi:10.1175/1520-0493(2003)131<1211:TRBSSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., D. E. Buechler, and R. J. Blakeslee, 2014: Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos. Res., 135–136, 404414, doi:10.1016/j.atmosres.2012.06.028.

    • Search Google Scholar
    • Export Citation
  • Christian, H. J., and Coauthors, 1999: The Lightning Imaging Sensor. 11th Int. Conf. on Atmospheric Electricity, Guntersville, AL, ICAE, 746749.

  • Cummins, K. L., and M. J. Murphy, 2009: An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the US NLDN. IEEE Trans. Electromagn. Compat., 51, 499518, doi:10.1109/TEMC.2009.2023450.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., J. A. Cramer, C. J. Biagi, E. P. Krider, J. Jerauld, M. A. Uman, and V. A. Rakov, 2006: The US National Lightning Detection Network: Post upgrade status. Preprints, Second Conf. on Meteorological Applications of Lightning Data, Atlanta, GA, Amer. Meteor. Soc., 6.1. [Available online at https://ams.confex.com/ams/pdfpapers/105142.pdf.]

  • Cummins, K. L., N. Honma, A. E. Pifer, T. Rogers, and M. Tatsumi, 2012: Improved detection of winter lightning in the Tohoku region of Japan using Vaisala’s LS700x technology. IEEJ Trans. Power Energy, 132, 529535, doi:10.1541/ieejpes.132.529.

    • Search Google Scholar
    • Export Citation
  • Fleenor, S. A., C. J. Biagi, K. L. Cummins, E. P. Krider, and X. M. Shao, 2009: Characteristics of cloud-to-ground lightning in warm-season thunderstorms in the central Great Plains. Atmos. Res., 91, 333352, doi:10.1016/j.atmosres.2008.08.011.

    • Search Google Scholar
    • Export Citation
  • Hansen, K., 2013: Plant stress paints early picture of drought. The Earth Observer, Vol. 25, No. 1, NASA Goddard Space Flight Center, Greenbelt, MD, 44–45. [Available online at http://eospso.gsfc.nasa.gov/sites/default/files/eo_pdfs/Jan-Feb_2013_508_color.pdf#page=44.]

  • Holle, R. L., R. E. Lopez, L. J. Arnold, and J. Endres, 1996: Insured lightning-caused property damage in three western states. J. Appl. Meteor., 35, 13441351, doi:10.1175/1520-0450(1996)035<1344:ILCPDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huff, F. A., and S. A. Changnon, 1972: Inadvertent precipitation modification by urban areas. Preprints, Third Conf. on Weather Modification, Boston, MA, Amer. Meteor. Soc., 7378.

  • Huffines, G. R., and R. E. Orville, 1999: Lightning ground flash density and thunderstorm duration in the continental United States: 1989–96. J. Appl. Meteor., 38, 10131019, doi:10.1175/1520-0450(1999)038<1013:LGFDAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huntrieser, H., H. Schlager, C. Feigl, and H. Holler, 1998: Transport and production of NOx in electrified thunderstorms: Survey of previous studies and new observations at midlatitudes. J. Geophys. Res., 103, 28 24728 264, doi:10.1029/98JD02353.

    • Search Google Scholar
    • Export Citation
  • Jayaratne, R., and E. Kuleshov, 2006: The relationship between lightning activity and surface wet bulb temperature and its variation with latitude in Australia. Meteor. Atmos. Phys., 91, 1724, doi:10.1007/s00703-004-0100-0.

    • Search Google Scholar
    • Export Citation
  • Kar, S. K., Y. A. Liou, and K. J. Ha, 2009: Aerosol effects on the enhancement of cloud-to-ground lightning over major urban areas of South Korea. Atmos. Res., 92, 8087, doi:10.1016/j.atmosres.2008.09.004.

    • Search Google Scholar
    • Export Citation
  • Koshak, W. J., M. F. Stewart, H. J. Christian, J. W. Bergstrom, J. M. Hall, and R. J. Solakiewicz, 2000: Laboratory calibration of the Optical Transient Detector and the Lightning Imaging Sensor. J. Atmos. Oceanic Technol., 17, 905915, doi:10.1175/1520-0426(2000)017<0905:LCOTOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koshak, W. J., M. N. Khan, A. P. Biazar, M. Newchurch, and R. T. McNider, 2009: A NASA model for improving the lightning NOx emission inventory for CMAQ. Preprints, Fourth Conf. on the Meteorological Applications of Lightning Data/11th Conf. on Atmospheric Chemistry, Phoenix, AZ, Amer. Meteor. Soc., J.8.2. [Available online at https://ams.confex.com/ams/pdfpapers/147334.pdf.]

  • Koshak, W. J., H. S. Peterson, A. P. Biazar, M. N. Khan, and L. Wang, 2014: The NASA Lightning Nitrogen Oxides Model (LNOM): Application to air quality modeling. Atmos. Res., 135–136, 363369, doi:10.1016/j.atmosres.2012.12.015.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., 2003: Sea surface temperature forcing of the upward trend in U.S. extreme precipitation. J. Geophys. Res., 108, 4020, doi:10.1029/2002JD002404.

    • Search Google Scholar
    • Export Citation
  • Latham, D. J., and J. A. Schlieter, 1989: Ignition probabilities of wildland fuels based on simulated lightning discharges. U.S. Department of Agriculture Forest Service Intermountain Research Station Res. Paper INT-411, 16 pp. [Available online at https://archive.org/details/ignitionprobabil411lath.]

  • Lee, D. S., and Coauthors, 1997: Estimations of global NOx emissions and their uncertainties. Atmos. Environ., 31, 17351749, doi:10.1016/S1352-2310(96)00327-5.

    • Search Google Scholar
    • Export Citation
  • Lopez, R. E., R. L. Holle, T. A. Heitmap, M. Boyson, M. Cherington, and K. Langford, 1993: The underreporting of lightning injuries and deaths in Colorado. Bull. Amer. Meteor. Soc., 74, 21712178, doi:10.1175/1520-0477(1993)074<2171:TUOLIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lyons, W. A., T. E. Nelson, E. R. Williams, J. Cramer, and T. Turner, 1998: Enhanced positive cloud-to-ground lightning in thunderstorms ingesting smoke. Science, 282, 7781, doi:10.1126/science.282.5386.77.

    • Search Google Scholar
    • Export Citation
  • Makela, A., and P. Rossi, 2011: The daily cloud-to-ground lightning flash density in the contiguous United States and Finland. Mon. Wea. Rev., 139, 13231337, doi:10.1175/2010MWR3517.1.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., and C. L. Ziegler, 2013: Aerosol effects on simulated storm electrification and precipitation in a two-moment bulk microphysics model. J. Atmos. Sci., 70, 20322050, doi:10.1175/JAS-D-12-0264.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. M., 1971: The effect of atmospheric aerosols on climate with special reference to temperature near the earth’s surface. J. Appl. Meteor., 10, 703714, doi:10.1175/1520-0450(1971)010<0703:TEOAAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Murray, N. D., R. E. Orville, and G. R. Huffines, 2000: Effect of pollution from Central American fires on cloud-to-ground lightning in May 1998. Geophys. Res. Lett., 27, 22492252, doi:10.1029/2000GL011656.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., 1991: Lightning ground flash density in the contiguous United States—1989. Mon. Wea. Rev., 119, 573577, doi:10.1175/1520-0493(1991)119<0573:LGFDIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., 1994: Cloud-to-ground lightning flash characteristics in the contiguous United States: 1989–1991. J. Geophys. Res., 99, 10 83310 841, doi:10.1029/93JD02914.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and A. C. Silver, 1997: Lightning ground flash density in the contiguous United States: 1992–95. Mon. Wea. Rev., 125, 631638, doi:10.1175/1520-0493(1997)125<0631:LGFDIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and G. R. Huffines, 1999: Lightning ground flash measurements over the contiguous United States: 1995–97. Mon. Wea. Rev., 127, 26932703, doi:10.1175/1520-0493(1999)127<2693:LGFMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and G. R. Huffines, 2001: Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989–98. Mon. Wea. Rev., 129, 11791193, doi:10.1175/1520-0493(2001)129<1179:CTGLIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and Coauthors, 2001: Enhancement of cloud-to-ground lightning activity over Houston, Texas. Geophys. Res. Lett., 28, 25972600, doi:10.1029/2001GL012990.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., G. R. Huffines, W. R. Burrows, R. L. Holle, and K. L. Cummins, 2002: The North American Lightning Detection Network (NALDN)—First results: 1998–2000. Mon. Wea. Rev., 130, 20982109, doi:10.1175/1520-0493(2002)130<2098:TNALDN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., G. R. Huffines, W. R. Burrows, and K. L. Cummins, 2011: The North American Lightning Detection Network (NALDN)—Analysis of flash data: 2001–09. Mon. Wea. Rev., 139, 13051322, doi:10.1175/2010MWR3452.1.

    • Search Google Scholar
    • Export Citation
  • Petersen, D., M. Bailey, W. H. Beasley, and J. Hallett, 2008: A brief review of the problem of lightning initiation and a hypothesis of initial lightning leader formation. J. Geophys. Res., 113, D17205, doi:10.1029/2007JD009036.

    • Search Google Scholar
    • Export Citation
  • Peterson, H. S., and W. H. Beasley, 2011: Possible catalytic effects of ice particles on the production of NOx by lightning discharges. Atmos. Chem. Phys., 11, 10 25910 268, doi:10.5194/acp-11-10259-2011.

    • Search Google Scholar
    • Export Citation
  • Peterson, H. S., and J. Hallett, 2012: Ice particle growth in the presence of nitric oxide. J. Geophys. Res., 117, D06302, doi:10.1029/2011JD016986.

    • Search Google Scholar
    • Export Citation
  • Price, C., 2000: Evidence for a link between global lightning activity and upper tropospheric water vapor. Nature, 406, 290293, doi:10.1038/35018543.

    • Search Google Scholar
    • Export Citation
  • Price, C., and D. Rind, 1994: Possible implications of global climate change on global lightning distributions and frequencies. J. Geophys. Res., 99, 10 82310 831, doi:10.1029/94JD00019.

    • Search Google Scholar
    • Export Citation
  • Reeve, N., and R. Toumi, 1999: Lightning activity as an indicator of climate change. Quart. J. Roy. Meteor. Soc., 125, 893903, doi:10.1002/qj.49712555507.

    • Search Google Scholar
    • Export Citation
  • Rorig, M. L., and S. A. Ferguson, 2002: The 2000 fire season: Lightning-caused fires. J. Appl. Meteor., 41, 786791, doi:10.1175/1520-0450(2002)041<0786:TFSLCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., and H. E. Fuelberg, 2010: Pre- and postupgrade distributions of NLDN reported cloud-to-ground lightning characteristics in the contiguous United States. Mon. Wea. Rev., 138, 36233633, doi:10.1175/2010MWR3283.1.

    • Search Google Scholar
    • Export Citation
  • Saba, M. M. F., W. Schulz, T. A. Warner, L. Z. S. Campos, C. Schumann, E. P. Krider, K. L. Cummins, and R. E. Orville, 2010: High-speed video observations of positive lightning flashes to ground. J. Geophys. Res., 115, D24201, doi:10.1029/2010JD014330.

    • Search Google Scholar
    • Export Citation
  • Steiger, S. M., R. E. Orville, and G. R. Huffines, 2002: Cloud-to-ground lightning characteristics over Houston, Texas: 1989–2000. J. Geophys. Res., 107, doi:10.1029/2001JD001142.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., 1999: Global circuit response to temperature on distinct time scales: A status report. Atmospheric and Ionospheric Phenomena Associated with Earthquakes, M. Hayakawa, Ed., Terra Scientific, 939949.

  • Williams, E. R., 2005: Lightning and climate: A review. Atmos. Res., 76, 272287, doi:10.1016/j.atmosres.2004.11.014.

  • Williams, E. R., and N. Renno, 1993: An analysis of the conditional instability of the tropical atmosphere. Mon. Wea. Rev., 121, 2136, doi:10.1175/1520-0493(1993)121<0021:AAOTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., and G. Satori, 2004: Lightning, thermodynamic and hydrological comparison of the two tropical continental chimneys. J. Atmos. Sol. Terr. Phys., 66, 12131231, doi:10.1016/j.jastp.2004.05.015.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., S. G. Geotis, N. Renno, S. A. Rutledge, E. Rasmussen, and T. Rickenbach, 1992: A radar and electrical study of tropical “hot towers.” J. Atmos. Sci., 49, 13861395, doi:10.1175/1520-0469(1992)049<1386:ARAESO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., K. Rothkin, D. Stevenson, and D. J. Boccippio, 2000: Global lightning variations caused by changes in thunderstorm flash rate and by changes in the number of thunderstorms. J. Appl. Meteor., 39, 22232230, doi:10.1175/1520-0450(2001)040<2223:GLVCBC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., and Coauthors, 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys. Res., 107, 8082, doi:10.1029/2001JD000380.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., V. Mushtak, D. Rosenfeld, S. J. Goodman, and D. J. Boccippio, 2005: Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate. Atmos. Res., 76, 288306, doi:10.1016/j.atmosres.2004.11.009.

    • Search Google Scholar
    • Export Citation
  • Yuan, T., L. A. Remer, K. E. Pickering, and H. Yu, 2011: Observational evidence of aerosol enhancement of lightning activity and convective invigoration. Geophys. Res. Lett., 38, L04701, doi:10.1029/2010GL046052.

    • Search Google Scholar
    • Export Citation
  • Zajac, B. A., and S. A. Rutledge, 2001: Cloud-to-ground lightning activity in the contiguous United States from 1995 to 1999. Mon. Wea. Rev., 129, 9991019, doi:10.1175/1520-0493(2001)129<0999:CTGLAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 694 170 12
PDF Downloads 451 86 14