Calculation and Evaluation of an Air-Freezing Index for the 1981–2010 Climate Normals Period in the Coterminous United States

Rocky Bilotta NOAA/National Climatic Data Center, and ERT, Inc., Asheville, North Carolina

Search for other papers by Rocky Bilotta in
Current site
Google Scholar
PubMed
Close
,
Jesse E. Bell NOAA/National Climatic Data Center, and Cooperative Institute for Climate and Satellites–North Carolina, North Carolina State University, Asheville, North Carolina

Search for other papers by Jesse E. Bell in
Current site
Google Scholar
PubMed
Close
,
Ethan Shepherd NOAA/National Climatic Data Center, and STG, Inc., Asheville, North Carolina

Search for other papers by Ethan Shepherd in
Current site
Google Scholar
PubMed
Close
, and
Anthony Arguez NOAA/National Climatic Data Center, Asheville, North Carolina

Search for other papers by Anthony Arguez in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The air-freezing index (AFI) is a common metric for determining the freezing severity of the winter season and estimating frost depth for midlatitude regions, which is useful for determining the depth of shallow foundation construction. AFI values represent the seasonal magnitude and duration of below-freezing air temperature. Departures of the daily mean temperature above or below 0°C (32°F) are accumulated over each August–July cold season; the seasonal AFI value is defined as the difference between the highest and lowest extrema points. Return periods are computed using generalized extreme value distribution analysis. This research replaces the methodology used by the National Oceanic and Atmospheric Administration to calculate AFI return periods for the 1951–80 time period, applying the new methodology to the 1981–2010 climate normals period. Seasonal AFI values and return period values were calculated for 5600 stations across the coterminous United States (CONUS), and the results were validated using U.S. Climate Reference Network temperature data. Return period values are typically 14%–18% lower across CONUS during 1981–2010 versus a recomputation of 1951–80 return periods with the new methodology. For the 100-yr (2 yr) return periods, about 59% (83%) of stations show a decrease of more than 10% in the more recent period, whereas 21% (2%) show an increase of more than 10%, indicating a net reduction in winter severity that is consistent with observed climate change.

Corresponding author address: Rocky Bilotta, NCDC–ERT, Inc., 151 Patton Ave., Asheville, NC 28801. E-mail: rocky.bilotta@noaa.gov

Abstract

The air-freezing index (AFI) is a common metric for determining the freezing severity of the winter season and estimating frost depth for midlatitude regions, which is useful for determining the depth of shallow foundation construction. AFI values represent the seasonal magnitude and duration of below-freezing air temperature. Departures of the daily mean temperature above or below 0°C (32°F) are accumulated over each August–July cold season; the seasonal AFI value is defined as the difference between the highest and lowest extrema points. Return periods are computed using generalized extreme value distribution analysis. This research replaces the methodology used by the National Oceanic and Atmospheric Administration to calculate AFI return periods for the 1951–80 time period, applying the new methodology to the 1981–2010 climate normals period. Seasonal AFI values and return period values were calculated for 5600 stations across the coterminous United States (CONUS), and the results were validated using U.S. Climate Reference Network temperature data. Return period values are typically 14%–18% lower across CONUS during 1981–2010 versus a recomputation of 1951–80 return periods with the new methodology. For the 100-yr (2 yr) return periods, about 59% (83%) of stations show a decrease of more than 10% in the more recent period, whereas 21% (2%) show an increase of more than 10%, indicating a net reduction in winter severity that is consistent with observed climate change.

Corresponding author address: Rocky Bilotta, NCDC–ERT, Inc., 151 Patton Ave., Asheville, NC 28801. E-mail: rocky.bilotta@noaa.gov
Save
  • Arguez, A., 2012: NOAA’s 1981–2010 climate normals: Supplemental normals. NOAA/NCDC Tech. Rep., 4 pp. [Available online at http://www1.ncdc.noaa.gov/pub/data/normals/1981-2010/supplemental/supplemental-methodology.pdf.]

  • Arguez, A., and S. Applequist, 2013: A harmonic approach for calculating daily temperature normals constrained by homogenized monthly temperature normals. J. Atmos. Oceanic Technol.,30, 1259–1265, doi:10.1175/JTECH-D-12-00195.1.

  • Arguez, A., I. Durre, S. Applequist, R. S. Vose, M. F. Squires, X. Yin, R. R. Heim Jr., and T. W. Owen, 2012: NOAA’s 1981–2010 U.S. climate normals: An overview. Bull. Amer. Meteor. Soc., 93, 16871697, doi:10.1175/BAMS-D-11-00197.1.

    • Search Google Scholar
    • Export Citation
  • Bell, J. E., and Coauthors, 2013: U.S. Climate Reference Network soil moisture and temperature observations. J. Hydrometeor.,14, 977–988, doi:10.1175/JHM-D-12-0146.1.

  • Brown, W. G., 1964: Difficulties associated with predicting depth of freeze or thaw. Can. Geotechnol. J., 1, 215226, doi:10.1139/t64-017.

    • Search Google Scholar
    • Export Citation
  • Clein, J. S., and J. P. Schimel, 1995: Microbial activity of tundra and taiga soils at subzero temperatures. Soil Biol. Biochem., 27, 12311234, doi:10.1016/0038-0717(95)00044-F.

    • Search Google Scholar
    • Export Citation
  • Coles, S., 2001: An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag, 208 pp.

  • Daly, C., G. H. Taylor, and W. P. Gibson, 1997: The PRISM approach to mapping precipitation and temperature. Preprints, 10th Conf. on Applied Climatology, Reno, NV, Amer. Meteor. Soc., 2023.

  • DeGaetano, A. T., M. I. Cameron, and D. S. Wilks, 2001: Physical simulation of maximum seasonal soil freezing depth in the United States using routine weather observations. J. Appl. Meteor. Climatol., 40, 546555, doi:10.1175/1520-0450(2001)040<0546:PSOMSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Diamond, H. J., and Coauthors, 2013: U.S. Climate Reference Network after one decade of operations: Status and assessment. Bull. Amer. Meteor. Soc., 94, 489498.

    • Search Google Scholar
    • Export Citation
  • Dutton, J. A., 2002: Opportunities and priorities in a new era for weather and climate services. Bull. Amer. Meteor. Soc., 83, 13031311, doi:10.1175/1520-0477(2002)083<1303:OAPIAN>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dye, D. G., and C. J. Tucker, 2003: Seasonality and trends of snow-cover, vegetation index, and temperature in northern Eurasia. Geophys. Res. Lett., 30, 1405, doi:10.1029/2002GL016384.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., 2002: Recent changes in frost days and the frost-free season in the United States. Bull. Amer. Meteor. Soc., 83, 13271332, doi:10.1175/1520-0477(2002)083<1327:RCIFDA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., J. L. Evans, P. Ya. Groisman, T. R. Karl, K. E. Kunkel, and P. Ambenje, 2000: Observed variability and trends in extreme climate events: A brief review. Bull. Amer. Meteor. Soc., 81, 417425, doi:10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Elliott, A. C., and H. A. Henry, 2009: Freeze–thaw cycle amplitude and freezing rate effects on extractable nitrogen in a temperate old field soil. Biol. Fertil. Soils, 45, 469476, doi:10.1007/s00374-009-0356-0.

    • Search Google Scholar
    • Export Citation
  • Gel’fan, A. N., 1989: Comparison of two methods of calculating soil freezing depth. Sov. Meteor. Hydrol., 2, 7883.

  • Guttorp, P., and T. Y. Kim, 2013: Uncertainty in ranking the hottest years of U.S. surface temperatures. J. Climate, 26, 63236328, doi:10.1175/JCLI-D-12-00760.1.

    • Search Google Scholar
    • Export Citation
  • Jones, C. W., D. G. Miedema, and J. S. Watkins, 1982: Frost action in soil foundations and control of surface heaving. Bureau of Reclamation Rep. REC-ERC-82-17, Denver, CO, 69 pp.

  • Karl, T. R., and W. J. Koss, 1984: Regional and national monthly, seasonal, and annual temperature weighted by area, 1895–1983. Historical Climatology Series 4-3, National Climatic Data Center, Asheville, NC, 38 pp.

  • Kreyling, J., and H. A. Henry, 2011: Vanishing winters in Germany: Soil frost dynamics and snow cover trends, and ecological implications. Climate Res., 46, 269276, doi:10.3354/cr00996.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K., D. Easterling, K. Hubbard, and K. Redmond, 2004: Temporal variations in frost-free season in the United States: 1895–2000. Geophys. Res. Lett.,31, L03201, doi:10.1029/2003GL018624.

  • Lawrimore, J. H., K. Gleason, D. H. Levinson, T. W. Owen, and D. M. Anderson, 2007: Climate information for the broadcast community. 16th Conf. on Applied Climatology/35th Conf. on Broadcast Meteorology, San Antonio, TX, Amer. Meteor. Soc., J2.5. [Available online at https://ams.confex.com/ams/pdfpapers/121047.pdf.]

  • Lemke, P., and Coauthors, 2007: Observations: Changes in snow, ice and frozen ground. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 337–383.

  • Menne, M. J., C. N. Williams Jr., and M. A. Palecki, 2010: On the reliability of the U.S. surface temperature record. J. Geophys. Res., 115, D11108, doi:10.1029/2009JD013094.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, B. G. Gleason, T. G. Houston, and R. S. Vose, 2012: An overview of the Global Historical Climatology Network-Daily database. J. Atmos. Oceanic Technol., 29, 897910, doi:10.1175/JTECH-D-11-00103.1.

    • Search Google Scholar
    • Export Citation
  • Noshiro, M., and A. Sakai, 1979: Freezing resistance of herbaceous plants. Low Temp. Sci.,37B, 11–18.

  • Rigby, J. R., and A. Porporato, 2008: Spring frost risk in a changing climate. Geophys. Res. Lett., 35, L12703, doi:10.1029/2008GL033955.

    • Search Google Scholar
    • Export Citation
  • Schaefer, G. L., M. H. Cosh, and T. J. Jackson, 2007: The USDA Natural Resources Conservation Service Soil Climate Analysis Network (SCAN). J. Atmos. Oceanic Technol., 24, 20732077, doi:10.1175/2007JTECHA930.1.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2012: Changes in climate extremes and their impacts on the natural physical environment. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, C. B. Field, Ed., Cambridge University Press, 109–230 pp.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Steurer, P. M., 1989: Methods used to create an estimate of the 100-year return period of the air-freezing index. Frost-protected shallow foundation development program—Phase II final report: Appendix A. Rep. Prepared for the Society of the Plastics Industry, NAHB Research Center, Upper Marlboro, MD, 7 pp.

  • Steurer, P. M., and J. H. Crandell, 1995: Comparison of methods used to create an estimate of air-freezing index. J. Cold Reg. Eng., 9, 6474, doi:10.1061/(ASCE)0887-381X(1995)9:2(64).

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., T. R. Karl, and T. W. Spence, 2002: The need for a systems approach to climate observations. Bull. Amer. Meteor. Soc., 83, 15931602, doi:10.1175/BAMS-83-11-1593.

    • Search Google Scholar
    • Export Citation
  • Vose, R. S., and Coauthors, 2014: Improved historical temperature and precipitation time series for U.S. climate divisions. J. Appl. Meteor. Climatol., 53, 12321251, doi:10.1175/JAMC-D-13-0248.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. Chen, and J. Cihlar, 2003: A process-based model for quantifying the impact of climate change on permafrost thermal regimes. J. Geophys. Res., 108, 4695, doi:10.1029/2002JD003354.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. Chen, S. Smith, D. Riseborough, and J. Cihlar, 2005: Soil temperature in Canada during the twentieth century: Complex responses to atmospheric climate change. J. Geophys. Res.,110, D03112, doi:10.1029/2004JD004910.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 14683 4756 114
PDF Downloads 3594 468 34