Characterization of Initiation and Growth of Selected Severe Convective Storms over Central Europe with MSG-SEVIRI

Fabian Senf Atmospheric Dynamics and Predictability Branch, Hans Ertel Centre for Weather Research, Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Fabian Senf in
Current site
Google Scholar
PubMed
Close
,
Felix Dietzsch Deutscher Wetterdienst, Offenbach, Germany

Search for other papers by Felix Dietzsch in
Current site
Google Scholar
PubMed
Close
,
Anja Hünerbein Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Anja Hünerbein in
Current site
Google Scholar
PubMed
Close
, and
Hartwig Deneke Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Hartwig Deneke in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The early development of severe convective storms over central Europe was investigated on the basis of nine cases from 2012. Using data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) imaging radiometer aboard a geostationary Meteosat Second Generation (MSG) satellite, dynamical and microphysical properties of developing storms were monitored and combined. Several satellite-based storm properties, for example, cloud-top temperature, cloud-top cooling rate, and cloud particle effective radius, were investigated following the storm tracks. A framework for quantification of uncertainties of along-track properties resulting from tracking errors was also introduced. The majority of studied storms show a distinct maximum in cloud-top cooling rate; the corresponding time was used for track synchronization. The cloud growth phase was divided into an initial updraft intensification period before the maximum cooling and a continued growth period afterward. The initial updraft intensification period is variable and strongly depends on the convection initiation mechanism and detection conditions. The continued growth period is more confined, lasting between 30 and 45 min. The change in anvil size and the resulting average anvil edge velocity were determined from infrared satellite images. As a consequence of mass transport, the anvil edge velocity shows its highest correlation with the cloud-top vertical velocity approximately 20–30 min after the maximum in the cloud-top cooling rate. Larger effective radii of ice crystals were observed for vertically slower-growing clouds. The largest anticorrelation between cloud-top vertical velocity and effective radius was found at a time lag of 20 min after the maximum in cloud-top cooling.

Corresponding author address: Fabian Senf, Leibniz Institute for Tropospheric Research, Permoserstraße 15, 04318 Leipzig, Germany. E-mail: senf@tropos.de

Abstract

The early development of severe convective storms over central Europe was investigated on the basis of nine cases from 2012. Using data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) imaging radiometer aboard a geostationary Meteosat Second Generation (MSG) satellite, dynamical and microphysical properties of developing storms were monitored and combined. Several satellite-based storm properties, for example, cloud-top temperature, cloud-top cooling rate, and cloud particle effective radius, were investigated following the storm tracks. A framework for quantification of uncertainties of along-track properties resulting from tracking errors was also introduced. The majority of studied storms show a distinct maximum in cloud-top cooling rate; the corresponding time was used for track synchronization. The cloud growth phase was divided into an initial updraft intensification period before the maximum cooling and a continued growth period afterward. The initial updraft intensification period is variable and strongly depends on the convection initiation mechanism and detection conditions. The continued growth period is more confined, lasting between 30 and 45 min. The change in anvil size and the resulting average anvil edge velocity were determined from infrared satellite images. As a consequence of mass transport, the anvil edge velocity shows its highest correlation with the cloud-top vertical velocity approximately 20–30 min after the maximum in the cloud-top cooling rate. Larger effective radii of ice crystals were observed for vertically slower-growing clouds. The largest anticorrelation between cloud-top vertical velocity and effective radius was found at a time lag of 20 min after the maximum in cloud-top cooling.

Corresponding author address: Fabian Senf, Leibniz Institute for Tropospheric Research, Permoserstraße 15, 04318 Leipzig, Germany. E-mail: senf@tropos.de
Save
  • Adler, R. F., and D. D. Fenn, 1979a: Thunderstorm intensity as determined from satellite data. J. Appl. Meteor., 18, 502517, doi:10.1175/1520-0450(1979)018<0502:TIADFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and D. D. Fenn, 1979b: Thunderstorm vertical velocities estimated from satellite data. J. Atmos. Sci., 36, 17471754, doi:10.1175/1520-0469(1979)036<1747:TVVEFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and R. A. Mack, 1986: Thunderstorm cloud top dynamics as inferred from satellite observations and a cloud top parcel model. J. Atmos. Sci., 43, 19451960, doi:10.1175/1520-0469(1986)043<1945:TCTDAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO Model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905, doi:10.1175/MWR-D-10-05013.1.

    • Search Google Scholar
    • Export Citation
  • Betz, H. D., K. Schmidt, P. Laroche, P. Blanchet, W. P. Oettinger, E. Defer, Z. Dziewit, and J. Konarski, 2009: LINET—An international lightning detection network in Europe. Atmos. Res., 91, 564573, doi:10.1016/j.atmosres.2008.06.012.

    • Search Google Scholar
    • Export Citation
  • Bley, S., and H. Deneke, 2013: A threshold-based cloud mask for the high-resolution visible channel of Meteosat Second Generation SEVIRI. Atmos. Meas. Tech., 6, 27132723, doi:10.5194/amt-6-2713-2013.

    • Search Google Scholar
    • Export Citation
  • Carabajal Henken, C., M. J. Schmeits, H. Deneke, and R. A. Roebeling, 2011: Using MSG-SEVIRI cloud physical properties and weather radar observations for the detection of Cb/TCu clouds. J. Appl. Meteor. Climatol., 50, 15871600, doi:10.1175/2011JAMC2601.1.

    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., M. J. Pavolonis, J. M. Sieglaff, and A. K. Heidinger, 2013: Evolution of severe and nonsevere convection inferred from GOES-derived cloud properties. J. Appl. Meteor. Climatol., 52, 20092023, doi:10.1175/JAMC-D-12-0330.1.

    • Search Google Scholar
    • Export Citation
  • Craven, J. P., and H. E. Brooks, 2004: Baseline climatology of sounding derived parameters associated with deep, moist convection. Natl. Wea. Dig., 28 (1), 1324.

    • Search Google Scholar
    • Export Citation
  • Deneke, H. M., and R. A. Roebeling, 2010: Downscaling of METEOSAT SEVIRI 0.6 and 0.8 μm channel radiances utilizing the high-resolution visible channel. Atmos. Chem. Phys., 10, 97619772, doi:10.5194/acp-10-9761-2010.

    • Search Google Scholar
    • Export Citation
  • Derrien, M., and H. Le Gléau, 2005: MSG/SEVIRI cloud mask and type from SAFNWC. Int. J. Remote Sens., 26, 47074732, doi:10.1080/01431160500166128.

    • Search Google Scholar
    • Export Citation
  • Dotzek, N., P. Groenemeijer, B. Feuerstein, and A. M. Holzer, 2009: Overview of ESSL’s severe convective storms research using the European Severe Weather Database ESWD. Atmos. Res., 93, 575586, doi:10.1016/j.atmosres.2008.10.020.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., R. H. Blackmer Jr., and S. Schotz, 1983: Upper-level structure of Oklahoma tornadic storms on 2 May 1979. I: Radar and satellite observations. J. Atmos. Sci., 40, 17401755, doi:10.1175/1520-0469(1983)040<1740:ULSOOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, G., P. Yang, B.-C. Gao, B. A. Baum, Y. X. Hu, M. D. King, and S. Platnick, 2007: High cloud properties from three years of MODIS Terra and Aqua collection-4 data over the tropics. J. Appl. Meteor. Climatol., 46, 18401856, doi:10.1175/2007JAMC1583.1.

    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., and H. Laurent, 2004: The convective system area expansion over Amazonia and its relationships with convective system life duration and high-level wind divergence. Mon. Wea. Rev., 132, 714725, doi:10.1175/1520-0493(2004)132<0714:TCSAEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., W. B. Rossow, R. L. Guedes, and A. W. Walker, 1998: Life cycle variations of mesoscale convective systems over the Americas. Mon. Wea. Rev., 126, 16301654, doi:10.1175/1520-0493(1998)126<1630:LCVOMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 418 pp.

  • Marshak, A., S. Platnick, T. Varnai, G. Wen, and R. F. Cahalan, 2006: Impact of three-dimensional radiative effects on satellite retrievals of cloud droplet sizes. J. Geophys. Res., 111, D09207, doi:10.1029/2005JD006686.

    • Search Google Scholar
    • Export Citation
  • Matthee, R., and J. R. Mecikalski, 2013: Geostationary infrared methods for detecting lightning-producing cumulonimbus clouds. J. Geophys. Res. Atmos., 118, 65806592, doi:10.1002/jgrd.50485.

    • Search Google Scholar
    • Export Citation
  • McAnelly, R. L., and W. R. Cotton, 1989: The precipitation life cycle of mesoscale convective complexes over the central United States. Mon. Wea. Rev., 117, 784808, doi:10.1175/1520-0493(1989)117<0784:TPLCOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., and K. M. Bedka, 2006: Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery. Mon. Wea. Rev., 134, 4977, doi:10.1175/MWR3062.1.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., K. M. Bedka, S. J. Paech, and L. A. Litten, 2008: A statistical evaluation of GOES cloud-top properties for nowcasting convective initiation. Mon. Wea. Rev., 136, 48994914, doi:10.1175/2008MWR2352.1.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., W. M. MacKenzie Jr., M. Koenig, and S. Muller, 2010a: Cloud-top properties of growing cumulus prior to convective initiation as measured by Meteosat Second Generation. Part I: Infrared fields. J. Appl. Meteor. Climatol., 49, 521534, doi:10.1175/2009JAMC2344.1.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., W. M. Mackenzie Jr., M. Koenig, and S. Muller, 2010b: Cloud-top properties of growing cumulus prior to convective initiation as measured by Meteosat Second Generation. Part II: Use of visible reflectance. J. Appl. Meteor. Climatol., 49, 25442558, doi:10.1175/2010JAMC2480.1.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., P. D. Watts, and M. Koenig, 2011: Use of Meteosat Second Generation optimal cloud analysis fields for understanding physical attributes of growing cumulus clouds. Atmos. Res., 102, 175190, doi:10.1016/j.atmosres.2011.06.023.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., M. König, and C. P. Jewett, 2013a: Application of high-resolution visible sharpening of partly cloudy pixels in Meteosat Second Generation infrared imagery. Atmos. Res., 134, 111, doi:10.1016/j.atmosres.2013.07.014.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., P. Minnis, and R. Palikonda, 2013b: Use of satellite derived cloud properties to quantify growing cumulus beneath cirrus clouds. Atmos. Res., 120–121, 192201, doi:10.1016/j.atmosres.2012.08.017.

    • Search Google Scholar
    • Export Citation
  • Meirink, J. F., R. Roebeling, E. Wolters, and H. Deneke, 2010: Algorithm theoretical basis document: Cloud physical products—SEVIRI/AVHRR. EUMETSAT Satellite Application Facility on Climate Monitoring Rep. SAF/CM/KNMI/ATBD/CPP, 23 pp. [Available online at http://www.knmi.nl/publications/fulltexts/saf_cm_knmi_atbd_cpp_1.0.pdf.]

  • Merk, D., and T. Zinner, 2013: Detection of convective initiation using Meteosat SEVIRI: Implementation in and verification with the tracking and nowcasting algorithm Cb-TRAM. Atmos. Meas. Tech., 6, 19031918, doi:10.5194/amt-6-1903-2013.

    • Search Google Scholar
    • Export Citation
  • Morel, C., and S. Senesi, 2002: A climatology of mesoscale convective systems over Europe using satellite infrared imagery. I: Methodology. Quart. J. Roy. Meteor. Soc., 128, 19531971, doi:10.1256/003590002320603485.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 18781893, doi:10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, D. W., 1980: Observations of damaging hailstorms from geosynchronous satellite digital data. Mon. Wea. Rev., 108, 337348, doi:10.1175/1520-0493(1980)108<0337:OODHFG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roberts, R., and S. Rutledge, 2003: Nowcasting storm initiation and growth using GOES-8 and WSR-88D data. Wea. Forecasting, 18, 562584, doi:10.1175/1520-0434(2003)018<0562:NSIAGU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roebeling, R. A., A. J. Feijt, and P. Stammes, 2006: Cloud property retrievals for climate monitoring: Implications of differences between Spinning Enhanced Visible and Infrared Imager (SEVIRI) on Meteosat-8 and Advanced Very High Resolution Radiometer (AVHRR) on NOAA-17. J. Geophys. Res., 111, D20120, doi:10.1029/2005JD006990.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., W. L. Woodley, A. Lerner, G. Kelman, and D. T. Lindsey, 2008: Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase. J. Geophys. Res., 113, D04208, doi:10.1029/2007JD008600.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., S. Tjemkes, M. Gube, and L. van de Berg, 1997: Monitoring deep convection and convective overshooting with Meteosat. Adv. Space Res., 19, 433441, doi:10.1016/S0273-1177(97)00051-3.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier, 2002: An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc., 83, 977992, doi:10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., M. M. Gunshor, W. P. Menzel, J. J. Gurka, J. Li, and A. S. Bachmeier, 2005: Introducing the Next-Generation Advanced Baseline Imager on GOES-R. Bull. Amer. Meteor. Soc., 86, 10791096, doi:10.1175/BAMS-86-8-1079.

    • Search Google Scholar
    • Export Citation
  • Schulz, J., and Coauthors, 2009: Operational climate monitoring from space: The EUMETSAT Satellite Application Facility on Climate Monitoring (CM-SAF). Atmos. Chem. Phys., 9, 16871709, doi:10.5194/acp-9-1687-2009.

    • Search Google Scholar
    • Export Citation
  • Sieglaff, J. M., L. M. Cronce, W. F. Feltz, K. M. Bedka, M. J. Pavolonis, and A. K. Heidinger, 2011: Nowcasting convective storm initiation using satellite-based box-averaged cloud-top cooling and cloud-type trends. J. Appl. Meteor. Climatol., 50, 110126, doi:10.1175/2010JAMC2496.1.

    • Search Google Scholar
    • Export Citation
  • Sieglaff, J. M., L. M. Cronce, and W. F. Feltz, 2014: Improving satellite-based convective cloud growth monitoring with visible optical depth retrievals. J. Appl. Meteor. Climatol., 53, 506520, doi:10.1175/JAMC-D-13-0139.1.

    • Search Google Scholar
    • Export Citation
  • Siewert, C. W., M. Koenig, and J. R. Mecikalski, 2010: Application of Meteosat Second Generation data towards improving the nowcasting of convective initiation. Meteor. Appl., 17, 442451, doi:10.1002/met.176.

    • Search Google Scholar
    • Export Citation
  • Walker, J. R., W. M. MacKenzie Jr., J. R. Mecikalski, and C. P. Jewett, 2012: An enhanced geostationary satellite-based convective initiation algorithm for 0–2-h nowcasting with object tracking. J. Appl. Meteor. Climatol., 51, 19311949, doi:10.1175/JAMC-D-11-0246.1.

    • Search Google Scholar
    • Export Citation
  • Wapler, K., and P. James, 2015: Thunderstorm occurrence and characteristics in central Europe under different synoptic conditions. Atmos. Res., doi:10.1016/j.atmosres.2014.07.011, in press.

    • Search Google Scholar
    • Export Citation
  • Wolters, E. L. A., H. M. Deneke, B. J. J. M. van den Hurk, J. F. Meirink, and R. A. Roebeling, 2010: Broken and inhomogeneous cloud impact on satellite cloud particle effective radius and cloud-phase retrievals. J. Geophys. Res., 115, D10214, doi:10.1029/2009JD012205.

    • Search Google Scholar
    • Export Citation
  • Zinner, T., H. Mannstein, and A. Tafferner, 2008: Cb-TRAM: Tracking and monitoring severe convection from onset over rapid development to mature phase using multi-channel Meteosat-8 SEVIRI data. Meteor. Atmos. Phys., 101, 191210, doi:10.1007/s00703-008-0290-y.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 723 124 12
PDF Downloads 333 71 10