Radar-Derived Statistics of Convective Storms in Southeast Queensland

Justin R. Peter International Centre for Applied Climate Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia

Search for other papers by Justin R. Peter in
Current site
Google Scholar
PubMed
Close
,
Michael J. Manton School of Mathematical Sciences, Monash University, Clayton, Victoria, Australia

Search for other papers by Michael J. Manton in
Current site
Google Scholar
PubMed
Close
,
Rodney J. Potts Centre for Australian Weather and Climate Research, Melbourne, Victoria, Australia

Search for other papers by Rodney J. Potts in
Current site
Google Scholar
PubMed
Close
,
Peter T. May Centre for Australian Weather and Climate Research, Melbourne, Victoria, Australia

Search for other papers by Peter T. May in
Current site
Google Scholar
PubMed
Close
,
Scott M. Collis Environmental Science Division, Argonne National Laboratory, Argonne, Illinois

Search for other papers by Scott M. Collis in
Current site
Google Scholar
PubMed
Close
, and
Louise Wilson School of Mathematical Sciences, Monash University, Clayton, Victoria, Australia

Search for other papers by Louise Wilson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The aim of this study is to examine the statistics of convective storms and their concomitant changes with thermodynamic variability. The thermodynamic variability is analyzed by performing a cluster analysis on variables derived from radiosonde releases at Brisbane Airport in Australia. Three objectively defined regimes are found: a dry, stable regime with mainly westerly surface winds, a moist northerly regime, and a moist trade wind regime. S-band radar data are analyzed and storms are identified using objective tracking software [Thunderstorm Identification, Tracking, Analysis, and Nowcasting (TITAN)]. Storm statistics are then investigated, stratified by the regime subperiods. Convective storms are found to form and maintain along elevated topography. Probability distributions of convective storm size and rain rate are found to follow lognormal distributions with differing mean and variance among the regimes. There was some evidence of trimodal storm-top heights, located at the trade inversion (1.5–2 km), freezing level (3.6–4 km), and near 6 km, but it was dependent on the presence of the trade inversion. On average, storm volume and height are smallest in the trade regime and rain rate is largest in the westerly regime. However, westerly regime storms occur less frequently and have shorter lifetimes, which were attributed to the enhanced stability and decreased humidity profiles. Furthermore, time series of diurnal rain rate exhibited early morning and midafternoon maxima for the northerly and trade regimes but were absent for the westerly regime. The observations indicate that westerly regime storms are primarily driven by large-scale forcing, whereas northerly and trade wind regime storms are more responsive to surface characteristics.

Corresponding author address: Justin R. Peter, International Centre for Applied Climate Science (ICACS), West St., Toowoomba, QLD, 4350, Australia. E-mail: justin.peter@usq.edu.au

Abstract

The aim of this study is to examine the statistics of convective storms and their concomitant changes with thermodynamic variability. The thermodynamic variability is analyzed by performing a cluster analysis on variables derived from radiosonde releases at Brisbane Airport in Australia. Three objectively defined regimes are found: a dry, stable regime with mainly westerly surface winds, a moist northerly regime, and a moist trade wind regime. S-band radar data are analyzed and storms are identified using objective tracking software [Thunderstorm Identification, Tracking, Analysis, and Nowcasting (TITAN)]. Storm statistics are then investigated, stratified by the regime subperiods. Convective storms are found to form and maintain along elevated topography. Probability distributions of convective storm size and rain rate are found to follow lognormal distributions with differing mean and variance among the regimes. There was some evidence of trimodal storm-top heights, located at the trade inversion (1.5–2 km), freezing level (3.6–4 km), and near 6 km, but it was dependent on the presence of the trade inversion. On average, storm volume and height are smallest in the trade regime and rain rate is largest in the westerly regime. However, westerly regime storms occur less frequently and have shorter lifetimes, which were attributed to the enhanced stability and decreased humidity profiles. Furthermore, time series of diurnal rain rate exhibited early morning and midafternoon maxima for the northerly and trade regimes but were absent for the westerly regime. The observations indicate that westerly regime storms are primarily driven by large-scale forcing, whereas northerly and trade wind regime storms are more responsive to surface characteristics.

Corresponding author address: Justin R. Peter, International Centre for Applied Climate Science (ICACS), West St., Toowoomba, QLD, 4350, Australia. E-mail: justin.peter@usq.edu.au
Save
  • Abbs, D., and K. McKinnes, 2004: Analysis of extreme rainfall and wind events in a GCM. The impact of climate change in extreme rainfall and coastal sea levels over south-east Queensland, Part 1, CSIRO, 48 pp. [Available online at http://www.hpsc.csiro.au/users/69999/TCs_extreme_rainfall_reports/gccc_report_final_200411.doc.]

  • Bellon, A., and I. Zawadzki, 2003: A 9-year summary of radar characteristics of mesocyclonic storms and of deep convection in southern Quebec. Atmos.–Ocean, 41, 99120, doi:10.3137/ao.410201.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and Coauthors, 2007: The Convective Storm Initiation Project. Bull. Amer. Meteor. Soc., 88, 19391955, doi:10.1175/BAMS-88-12-1939.

    • Search Google Scholar
    • Export Citation
  • Cahalan, R., and J. Joseph, 1989: Fractal statistics of cloud fields. Mon. Wea. Rev., 117, 261272, doi:10.1175/1520-0493(1989)117<0261:FSOCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056, doi:10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cetrone, J., and R. Houze, 2006: Characteristics of tropical convection over the ocean near Kwajalein. Mon. Wea. Rev., 134, 834853, doi:10.1175/MWR3075.1.

    • Search Google Scholar
    • Export Citation
  • Chen, M., Y. Wang, F. Gao, and X. Xiao, 2012: Diurnal variations in convective storm activity over contiguous North China during the warm season based on radar mosaic climatology. J. Geophys. Res., 117, D20115, doi:10.1029/2012JD018158.

    • Search Google Scholar
    • Export Citation
  • Chen, M., Y. Wang, F. Gao, and X. Xiao, 2014: Diurnal evolution and distribution of warm-season convective storms in different prevailing wind regimes over contiguous north China. J. Geophys. Res. Atmos., 119, 27422763, doi:10.1002/2013JD021145.

    • Search Google Scholar
    • Export Citation
  • Cheng, C., and R. Houze, 1979: The distribution of convective and mesoscale precipitation in GATE radar echo patterns. Mon. Wea. Rev., 107, 13701381, doi:10.1175/1520-0493(1979)107<1370:TDOCAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., S. W. Nesbitt, S. A. Rutledge, W. A. Petersen, and S. Yuter, 2007: Radar characteristics of precipitation features in the EPIC and TEPPS regions of the east Pacific. Mon. Wea. Rev., 135, 15761595, doi:10.1175/MWR3340.1.

    • Search Google Scholar
    • Export Citation
  • Collis, S., A. Protat, and K. Chung, 2010: The effect of radial velocity gridding artifacts on variationally retrieved vertical velocities. J. Atmos. Oceanic Technol., 27, 1239–1246, doi:10.1175/2010JTECHA1402.1.

    • Search Google Scholar
    • Export Citation
  • Connor, G., and M. Bonnel, 1998: Air mass and dynamic parameters affecting trade wind precipitation on the northeast Queensland tropical coast. Int. J. Climatol., 18, 13571372, doi:10.1002/(SICI)1097-0088(1998100)18:12<1357::AID-JOC317>3.0.CO;2-Z.

    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., and S. A. Rutledge, 1998: The vertical structure of TOGA COARE convection. Part I: Radar echo distributions. J. Atmos. Sci., 55, 27302747, doi:10.1175/1520-0469(1998)055<2730:TVSOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dixon, M., and G. Weiner, 1993: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A radar-based methodology. J. Atmos. Oceanic Technol., 10, 785797, doi:10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gong, X., and M. Richman, 1995: On the application of cluster analysis to growing season precipitation data in North America east of the Rockies. J. Climate, 8, 897931, doi:10.1175/1520-0442(1995)008<0897:OTAOCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goudenhoofdt, E., and L. Delobbe, 2013: Statistical characteristics of convective storms in Belgium derived from volumetric weather radar observations. J. Appl. Meteor. Climatol., 52, 918934, doi:10.1175/JAMC-D-12-079.1.

    • Search Google Scholar
    • Export Citation
  • Hartigan, J., and M. Wong, 1979: A K-means clustering algorithm. Appl. Stat., 28, 100108, doi:10.2307/2346830.

  • Haynes, J. M., and G. L. Stephens, 2007: Tropical oceanic cloudiness and the incidence of precipitation: Early results from CloudSat. Geophys. Res. Lett., 34, L09811, doi:10.1029/2007GL029335.

  • Hopkins, L., and G. Holland, 1997: Australian heavy-rain days and associated east coast cyclones: 1958–92. J. Climate, 10, 621635, doi:10.1175/1520-0442(1997)010<0621:AHRDAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 21792196, doi:10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., and C.-P. Cheng, 1977: Radar characteristics of tropical convection observed during GATE: Mean properties and trends over the summer season. Mon. Wea. Rev., 105, 964980, doi:10.1175/1520-0493(1977)105<0964:RCOTCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, W.-R., and J. C. L. Chan, 2011: Maintenance mechanisms for the early-morning maximum summer rainfall over southeast China. Quart. J. Roy. Meteor. Soc., 137, 959968, doi:10.1002/qj.815.

    • Search Google Scholar
    • Export Citation
  • Iwanchuk, R., 1973: Characteristics and distribution of precipitation areas over the tropical Atlantic. M.S. thesis, Dept. of Meteorology, Massachusetts Institute of Technology, 106 pp.

  • Johnson, R. H., P. E. Ciesielski, and K. A. Hart, 1996: Tropical inversions near the 0°C level. J. Atmos. Sci., 53, 18381855, doi:10.1175/1520-0469(1996)053<1838:TINTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., and R. E. Carbone, 2008: Propagation and diurnal evolution of warm season cloudiness in the Australian and Maritime Continent region. Mon. Wea. Rev., 136, 973994, doi:10.1175/2007MWR2152.1.

    • Search Google Scholar
    • Export Citation
  • Klingaman, N. P., 2012: A literature survey of key rainfall drivers in Queensland, Australia: Rainfall variability and change. Rainfall in Queensland, Part 1, Office of Climate Change, QCCCE Research Rep., 37 pp. [Available online at https://www.longpaddock.qld.gov.au/about/publications/pdf/walker-report-part-1.pdf.]

  • Kumar, V. V., C. Jakob, A. Protat, P. T. May, and L. Davies, 2013a: The four cumulus cloud modes and their progression during rainfall events: A C-band polarimetric radar perspective. J. Geophys. Res. Atmos., 118, 83758389, doi:10.1002/jgrd.50640.

    • Search Google Scholar
    • Export Citation
  • Kumar, V. V., A. Protat, P. T. May, C. Jakob, G. Penide, S. Kumar, and L. Davies, 2013b: On the effects of large-scale environment and surface types on convective cloud characteristics over Darwin, Australia. Mon. Wea. Rev., 141, 13581374, doi:10.1175/MWR-D-12-00160.1.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., D. A. Ahijevych, S. W. Nesbitt, R. E. Carbone, and S. A. Rutledge, 2007: Radar-observed characteristics of precipitating systems during NAME 2004. J. Climate, 20, 17131733, doi:10.1175/JCLI4082.1.

    • Search Google Scholar
    • Export Citation
  • Li, J., R. Yu, and T. Zhou, 2008: Seasonal variation of the diurnal cycle of rainfall in southern contiguous China. J. Climate, 21, 60366043, doi:10.1175/2008JCLI2188.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. J. Zipser, 2008: Diurnal cycles of precipitation, clouds, and lightning in the tropics from 9 years of TRMM observations. Geophys. Res. Lett., 35, L04819, doi:10.1029/2007GL032437.

    • Search Google Scholar
    • Export Citation
  • Lopez, R., 1976: Radar characteristics of the cloud population of tropical disturbances in the northwest Atlantic. Mon. Wea. Rev., 104, 268283, doi:10.1175/1520-0493(1976)104<0268:RCOTCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lopez, R., 1977: The lognormal distribution and cumulus cloud populations. Mon. Wea. Rev., 105, 865872, doi:10.1175/1520-0493(1977)105<0865:TLDACC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., and E. Zipser, 2000: Environmental variability during TOGA COARE. J. Atmos. Sci., 57, 23332350, doi:10.1175/1520-0469(2000)057<2333:EVDTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., and H. Riehl, 1964: Cloud structure and distributions over the tropical Pacific Ocean. Tellus, 16, 275287, doi:10.1111/j.2153-3490.1964.tb00167.x.

    • Search Google Scholar
    • Export Citation
  • Matthews, C., and B. Geerts, 1995: Characteristic thunderstorm distribution in the Sydney area. Aust. Meteor. Mag., 44, 127138.

  • May, P. T., and A. Ballinger, 2007: The statistical characteristics of convective cells in a monsoon regime (Darwin, northern Australia). Mon. Wea. Rev., 135, 8292, doi:10.1175/MWR3273.1.

    • Search Google Scholar
    • Export Citation
  • May, P. T., J. H. Mather, G. Vaughan, K. N. Bower, C. Jakob, G. M. McFarquhar, and G. G. Mace, 2008: The Tropical Warm Pool International Cloud Experiment. Bull. Amer. Meteor. Soc., 89, 629645, doi:10.1175/BAMS-89-5-629.

    • Search Google Scholar
    • Export Citation
  • May, P. T., C. N. Long, and A. Protat, 2012: The diurnal cycle of the boundary layer, convection, clouds, and surface radiation in a coastal monsoon environment (Darwin, Australia). J. Climate, 25, 53095326, doi:10.1175/JCLI-D-11-00538.1.

    • Search Google Scholar
    • Export Citation
  • Neggers, R., H. Jonker, and A. Siebesma, 2003: Size statistics of cumulus cloud populations in large-eddy simulations. J. Atmos. Sci., 60, 10601074, doi:10.1175/1520-0469(2003)60<1060:SSOCCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, doi:10.1175/1520-0442-16.10.1456.

    • Search Google Scholar
    • Export Citation
  • Noda, A. T., K. Oouchi, M. Satoh, and H. Tomita, 2012: Quantitative assessment of diurnal variation of tropical convection simulated by a global nonhydrostatic model without cumulus parameterization. J. Climate, 25, 51195134, doi:10.1175/JCLI-D-11-00295.1.

    • Search Google Scholar
    • Export Citation
  • Pope, M., C. Jakob, and M. Reeder, 2009a: Objective classification of tropical mesoscale convective systems. J. Climate, 22, 57975805, doi:10.1175/2009JCLI2777.1.

    • Search Google Scholar
    • Export Citation
  • Pope, M., C. Jakob, and M. Reeder, 2009b: Regimes of the north Australian wet season. J. Climate, 22, 66996715, doi:10.1175/2009JCLI3057.1.

    • Search Google Scholar
    • Export Citation
  • Potts, R., T. Keenan, and P. May, 2000: Radar characteristics of storms in the Sydney area. Mon. Wea. Rev., 128, 33083319, doi:10.1175/1520-0493(2000)128<3308:RCOSIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saxen, T. R., and Coauthors, 2008: The operational mesogamma-scale analysis and forecast system of the U.S. Army Test and Evaluation Command. Part IV: The White Sands Missile-Range Auto-Nowcast system. J. Appl. Meteor. Climatol., 47, 11231139, doi:10.1175/2007JAMC1656.1.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., R. A. Houze Jr., and S. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007, doi:10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2014: Use of NWP for nowcasting convective precipitation: Recent progress and challenges. Bull. Amer. Meteor. Soc., 95, 409426, doi:10.1175/BAMS-D-11-00263.1.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., and Coauthors, 2012: The Queensland Cloud Seeding Research Program. Bull. Amer. Meteor. Soc., 93, 7590, doi:10.1175/BAMS-D-11-00060.1.

    • Search Google Scholar
    • Export Citation
  • Tudurí, E., and C. Ramis, 1997: The environments of significant convective events in the western Mediterranean. Wea. Forecasting, 12, 294306, doi:10.1175/1520-0434(1997)012<0294:TEOSCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253277, doi:10.1175/BAMS-85-2-253.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. W. Wilson, M. Hagen, T. J. Emerson, J. O. Pinto, D. L. Rife, and L. Grebe, 2011: Radar climatology of the COPS region. Quart. J. Roy. Meteor. Soc., 137 (S1), 3141, doi:10.1002/qj.747.

    • Search Google Scholar
    • Export Citation
  • Wilks, D., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, Elsevier, 627 pp.

  • Wilson, L., M. J. Manton, and S. T. Siems, 2012: Relationship between rainfall and weather regimes in south-eastern Queensland, Australia. Int. J. Climatol., 33, 979–991, doi:10.1002/joc.3484.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2011: The Convective and Orographically-induced Precipitation Study (COPS): The scientific strategy, the field phase, and research highlights. Quart. J. Roy. Meteor. Soc., 137 (S1), 330, doi:10.1002/qj.752.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., K. Howard, and J. J. Gourley, 2005: Constructing three-dimensional multiple-radar reflectivity mosaics: Examples of convective storms and stratiform rain echoes. J. Atmos. Oceanic Technol., 22, 30–42, doi:10.1175/JTECH-1689.1.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and K. R. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122, 1751–1759, doi:10.1175/1520-0493(1994)122<1751:TVPORR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., 1998: The 600–800-mb minimum in tropical cloudiness observed during TOGA COARE. J. Atmos. Sci., 55, 22202228, doi:10.1175/1520-0469(1998)055<2220:TMMITC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 435 120 6
PDF Downloads 415 76 8