Changes in Aridity across Mexico in the Second Half of the Twentieth Century

Iryna Tereshchenko Departamento de Física, Centro Universitario de Ciencias Exactas e Ingeniería, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico

Search for other papers by Iryna Tereshchenko in
Current site
Google Scholar
PubMed
Close
,
Alexander N. Zolotokrylin Climatology Laboratory, Institute of Geography, Russian Academy of Sciences, Moscow, Russia

Search for other papers by Alexander N. Zolotokrylin in
Current site
Google Scholar
PubMed
Close
,
Elena A. Cherenkova Climatology Laboratory, Institute of Geography, Russian Academy of Sciences, Moscow, Russia

Search for other papers by Elena A. Cherenkova in
Current site
Google Scholar
PubMed
Close
,
Cesar Octavio Monzón Departamento de Física, Centro Universitario de Ciencias Exactas e Ingeniería, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico

Search for other papers by Cesar Octavio Monzón in
Current site
Google Scholar
PubMed
Close
,
Luis Brito-Castillo Centro de Investigaciones Biologicas del Noroeste, Guaymas, Sonora, Mexico

Search for other papers by Luis Brito-Castillo in
Current site
Google Scholar
PubMed
Close
, and
Tatiana B. Titkova Climatology Laboratory, Institute of Geography, Russian Academy of Sciences, Moscow, Russia

Search for other papers by Tatiana B. Titkova in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Six regions in Mexico, with typical interannual changes in the aridity index, have been defined by the 1951–2001 meteorological dataset. Peak months of rainfall differ within the regions. Most of the land in the Mexican terrain has had a slow aridization since the early 1980s. The decline in the aridity index in the early 1950s and late 1990s was caused by droughts in the area. The distinctive features of the aridization of Mexican dry lands are characterized by steady and extensive droughts during 1948–57, 1960–65, and 1994–2003 in the second half of the twentieth century. During the drought of 1951–57 substantial aridization in most of the dry lands was observed, including the Sierra Madre Occidental, Sierra Madre Oriental, and Mexican Altiplano. Aridization of dry lands during the drought in 1960–65 affected mostly the southern part of the Mexican Altiplano, the Sierra Madre del Sur, and the Yucatán Peninsula. For the drought in the 1990s, one special feature of the aridization was its propagation primarily beyond the Mexican Altiplano. Increased aridization of dry lands caused by long-term droughts during the last decade of the twentieth century did not result in a sizeable shift of the southern boundary of the dry lands. The only exception is the southern boundary (aridity index = 0.75) in the state of Sinaloa. In this area, the boundary moved southward and aridization intensified. The results obtained here can be used in studies of possible anthropogenic impact on the drought of the twentieth century’s last decade in Mexico, which includes changes in land use.

Corresponding author address: Luis Brito-Castillo, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Unidad Sonora, Campus Guaymas, Km. 2.35 camino al tular, estero de Bacochibampo, Guaymas, Sonora 85454, Mexico. E-mail: lbrito04@cibnor.mx

Abstract

Six regions in Mexico, with typical interannual changes in the aridity index, have been defined by the 1951–2001 meteorological dataset. Peak months of rainfall differ within the regions. Most of the land in the Mexican terrain has had a slow aridization since the early 1980s. The decline in the aridity index in the early 1950s and late 1990s was caused by droughts in the area. The distinctive features of the aridization of Mexican dry lands are characterized by steady and extensive droughts during 1948–57, 1960–65, and 1994–2003 in the second half of the twentieth century. During the drought of 1951–57 substantial aridization in most of the dry lands was observed, including the Sierra Madre Occidental, Sierra Madre Oriental, and Mexican Altiplano. Aridization of dry lands during the drought in 1960–65 affected mostly the southern part of the Mexican Altiplano, the Sierra Madre del Sur, and the Yucatán Peninsula. For the drought in the 1990s, one special feature of the aridization was its propagation primarily beyond the Mexican Altiplano. Increased aridization of dry lands caused by long-term droughts during the last decade of the twentieth century did not result in a sizeable shift of the southern boundary of the dry lands. The only exception is the southern boundary (aridity index = 0.75) in the state of Sinaloa. In this area, the boundary moved southward and aridization intensified. The results obtained here can be used in studies of possible anthropogenic impact on the drought of the twentieth century’s last decade in Mexico, which includes changes in land use.

Corresponding author address: Luis Brito-Castillo, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Unidad Sonora, Campus Guaymas, Km. 2.35 camino al tular, estero de Bacochibampo, Guaymas, Sonora 85454, Mexico. E-mail: lbrito04@cibnor.mx
Save
  • Alhamed, A., S. Lakshmivarahan, and D. J. Stensrud, 2002: Cluster analysis of multimodel ensemble data from SAMEX. Mon. Wea. Rev., 130, 226256, doi:10.1175/1520-0493(2002)130<0226:CAOMED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Allen, R. G., M. Smith, L. S. Pereira, and A. Perrier, 1994: An update for the calculation of reference evapotranspiration. Int. Comm. Irrig. Drain. Bull., 43, 3592.

    • Search Google Scholar
    • Export Citation
  • Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 300 pp. [Available online at http://www.fao.org/docrep/x0490e/x0490e00.htm.]

  • Brito-Castillo, L., 2012: Regional patterns of trends in long-term precipitation and stream flow observations: Singularities in a changing climate in Mexico. Greenhouse Gases: Emission, Measurement, and Management, G. Liu, Ed., In Tech, 387–412, doi:10.5772/32804.

  • Brito-Castillo, L., E. R. Vivoni, D. J. Gochis, A. Filonov, I. Tereshchenko, and C. Monzon, 2010: An anomaly in the occurrence of the month of maximum precipitation distribution in northwest Mexico. J. Arid Environ., 74, 531539, doi:10.1016/j.jaridenv.2009.10.014.

    • Search Google Scholar
    • Export Citation
  • Cavazos, T., 1999: Large-scale circulation anomalies conducive to extreme precipitation events and derivation of daily rainfall in northeastern Mexico and southeastern Texas. J. Climate, 12, 15061523, doi:10.1175/1520-0442(1999)012<1506:LSCACT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Comrie, A. C., and E. C. Glenn, 1998: Principal components-based regionalization of precipitation regimes across the southwest United States and northern Mexico, with an application to monsoon precipitation variability. Climate Res., 10, 201215, doi:10.3354/cr010201.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., R. Seager, and R. Miller, 2011: Atmospheric circulation anomalies during two persistent North American droughts: 1932–1939 and 1948–1957. Climate Dyn., 36, 23392355, doi:10.1007/s00382-010-0807-1.

    • Search Google Scholar
    • Export Citation
  • Dai, A., K. E. Trenberth, and T. Qian, 2004: A global data set of Palmer drought severity index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeor., 5, 11171130, doi:10.1175/JHM-386.1.

    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., R. A. Maddox, K. Howard, and S. Reyes, 1993: The Mexican monsoon. J. Climate, 6, 16651677, doi:10.1175/1520-0442(1993)006<1665:TMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ekstrom, M., P. D. Jones, H. Fowler, G. Lenderink, T. A. Buishand, and D. Conway, 2007: Regional climate model data used within the SWURVE project—1: projected changes in seasonal patterns and estimation of PET. Hydrol. Earth Syst. Sci., 11, 10691083, doi:10.5194/hess-11-1069-2007.

    • Search Google Scholar
    • Export Citation
  • Garcia, E., R. Vidal, and M. E. Hernandez, 1990: Las regiones climáticas de México (The climatic regions of Mexico). Atlas Nacional de México, Vol. 2, A. Garcia de Fuentes, Ed., Universidad Nacional Autónoma de México, Instituto de Geografia, 61 pp.

  • Giddings, L. S. M., B. M. Rutherford, and A. Maarouf, 2005: Standardized precipitation index zones for Mexico. Atmósfera, 18, 3356.

  • Giovannettone, J. P., and A. P. Barros, 2008: A remote sensing survey of the role of the landform on the organization of orographic precipitation in central and southern Mexico. J. Hydrometeor., 9, 12671283, doi:10.1175/2008JHM947.1.

    • Search Google Scholar
    • Export Citation
  • Hare, F. K., 1993: Climate variations, drought and desertification. World Meteorological Organization 653, 45 pp.

  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2013: Updated high-resolution grids of monthly climatic observations: The CRU TS3.10 dataset. Int. J. Climatol., 34, 623–642, doi:10.1002/joc.3711.

  • Hulme, M., R. March, and P. D. Jones, 1992: Global changes in a humidity index between 1931–60 and 1961–90. Climate Res., 2, 122, doi:10.3354/cr002001.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Jauregui, E., 2003: Climatology of land falling hurricanes and tropical storms in Mexico. Atmósfera, 16, 193204.

  • Kushnir, Y., R. Seager, M. Ting, N. Naik, and J. Nakamura, 2010: Mechanisms of tropical Atlantic SST influence on North American precipitation variability. J. Climate, 23, 56105628, doi:10.1175/2010JCLI3172.1.

    • Search Google Scholar
    • Export Citation
  • Lizárraga-Celaya, C., C. J. Watts, J. C. Rodriguez, J. Garatuza-Payan, R. L. Scott, and J. Sáiz-Hernández, 2010: Spatio-temporal variation in surface characteristics over the North American monsoon region. J. Arid Environ., 74, 540548, doi:10.1016/j.jaridenv.2009.09.027.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, doi:10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Magaña, V., J. Amador, and S. Medina, 1999: The midsummer drought over Mexico and Central America. J. Climate, 12, 15771588, doi:10.1175/1520-0442(1999)012<1577:TMDOMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Méndez, M., and V. Magaña, 2010: Regional aspects of prolonged meteorological droughts over Mexico and Central America. J. Climate, 23, 11751188, doi:10.1175/2009JCLI3080.1.

    • Search Google Scholar
    • Export Citation
  • Mendez-Barroso, L. A., E. R. Vivoni, Ch. J. Watts, and J. C. Rodriguez, 2009: Seasonal and interannual relations between precipitation, surface soil moisture and vegetation dynamics in the North American monsoon region. J. Hydrol., 377, 5970, doi:10.1016/j.jhydrol.2009.08.009.

    • Search Google Scholar
    • Export Citation
  • Pavia, E. G., and F. Graef, 2002: The recent rainfall climatology of the Mediterranean Californias. J. Climate, 15, 26972701, doi:10.1175/1520-0442(2002)015<2697:TRRCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Penman, H. L., 1948: Natural evaporation from open water, bare soil and grass. Proc. Roy. Soc., 193A, 120145, doi:10.1098/rspa.1948.0037.

    • Search Google Scholar
    • Export Citation
  • Reich, R. M., B. C. Aguirre-Bravo, and V. A. Bravo, 2008: New approach for modeling climatic data with applications in modeling tree species distributions in the states of Jalisco and Colima, Mexico. J. Arid Environ., 72, 13431357, doi:10.1016/j.jaridenv.2008.02.004.

    • Search Google Scholar
    • Export Citation
  • Romesburg, C. H., 1984: Cluster Analysis for Researchers. Life Time Learning, 334 pp.

  • Scheff, J., and D. M. W. Frierson, 2014: Scaling potential evapotranspiration with greenhouse warming. J. Climate, 27, 15391558, doi:10.1175/JCLI-D-13-00233.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., 2007: The turn of the century North American drought: Global context, dynamics, and past analogs. J. Climate, 20, 55275552, doi:10.1175/2007JCLI1529.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, M. Ting, M. A. Cane, N. Harnik, and Y. Kushnir, 2010: Adjustment of the atmospheric circulation to tropical Pacific SST anomalies: Variability of transient eddy propagation in the Pacific–North America sector. Quart. J. Roy. Meteor. Soc., 136, 277296, doi:10.1002/qj.588.

    • Search Google Scholar
    • Export Citation
  • Shein, K. A., 2006: State of the climate in 2005. Bull. Amer. Meteor. Soc., 87 (6), S1–S102, doi:10.1175/BAMS-87-6-shein.

  • Stahle, D. W., and Coauthors, 2009: Early 21st-century drought in Mexico. Eos, Trans. Amer. Geophys. Union, 90, 8990, doi:10.1029/2009EO110001.

    • Search Google Scholar
    • Export Citation
  • Szekely, G. J., and M. L. Rizzo, 2005: Hierarchical clustering via joint between-within distances: Extending Ward’s minimum variance method. J. Classif., 22, 151183, doi:10.1007/s00357-005-0012-9.

    • Search Google Scholar
    • Export Citation
  • Tereshchenko, I., A. N. Zolotkrylin, T. B. Titkova, L. Brito-Castillo, and C. O. Monzón, 2012: Seasonal variation of surface temperature-modulating factors in the Sonoran Desert in northwestern Mexico. J. Appl. Meteor. Climatol., 51, 15191530, doi:10.1175/JAMC-D-11-0160.1.

    • Search Google Scholar
    • Export Citation
  • Thornthwaite, C. W., 1948: An approach towards a rational classification of climate. Geogr. Rev., 38, 5594, doi:10.2307/210739.

  • Tian, D., and C. Martinez, 2014: The GEFS-based daily reference evapotranspiration (ETo) forecast and its implication for water management in the southeastern United States. J. Hydrometeor., 15, 11521165, doi:10.1175/JHM-D-13-0119.1.

    • Search Google Scholar
    • Export Citation
  • Tucker, C. J., J. E. Pinzon, M. E. Brown, D. Slayback, E. W. Pak, R. Mahoney, E. Vermote, and N. El Saleous, 2005: An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens., 26, 44854498, doi:10.1080/01431160500168686.

    • Search Google Scholar
    • Export Citation
  • UNCCD, 1994: United Nations convention to combat desertification in those countries experiencing serious drought and desertification, particularly in Africa. United Nations Treaty Series, Vol. 1954, 3. [Available online at https://treaties.un.org/pages/ViewDetails.aspx?src=TREATY&mtdsg_no=XXVII-10&chapter=27&lang=en.]

  • UNEP, 1992: World Atlas of Desertification. Edward Arnold, 69 pp.

  • UNESCO, 1979: Map of the world distribution of arid regions. UNESCO Man and the Biosphere (MAB) Tech. Note 7, 54 pp.

  • University of East Anglia Climatic Research Unit, 2013: CRU TS3.21: Climatic Research Unit (CRU) time series (TS) version 3.21 of high-resolution gridded data of month-by-month variation in climate (January 1901–December 2012). NCAS British Atmospheric Data Centre, accessed 2013–July 2014, doi:10.5285/D0E1585D-3417-485F-87AE-4FCECF10A992.

  • Vivoni, E. R., H. A. Moreno, G. Mascaro, J. C. Rodriguez, C. J. Watts, J. Garatuza-Payan, and R. L. Scott, 2008: Observed relation between evapotranspiration and soil moisture in the North American monsoon region. Geophys. Res. Lett., 35, L22403, doi:10.1029/2008GL036001.

    • Search Google Scholar
    • Export Citation
  • Watts, C. J., R. L. Scott, J. Garatuza-Payan, J. C. Rodriguez, J. H. Pruegger, W. P. Kustas, and M. Douglas, 2007: Changes in vegetation condition and surface fluxes during NAME 2004. J. Climate, 20, 18101820, doi:10.1175/JCLI4088.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Zolotokrylin, A. N., 2003: Climatic Desertification (in Russian). Nauka, 246 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 347 78 1
PDF Downloads 195 46 2