Vertical-Plane Dual-Doppler Radar Observations of Cumulus Toroidal Circulations

Yonggang Wang University of Wyoming, Laramie, Wyoming

Search for other papers by Yonggang Wang in
Current site
Google Scholar
PubMed
Close
and
Bart Geerts University of Wyoming, Laramie, Wyoming

Search for other papers by Bart Geerts in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

High-resolution vertical-plane dual-Doppler velocity data, collected by an airborne profiling cloud radar in transects across nonprecipitating orographic cumulus clouds, are used to examine vortical circulations near cloud top. These vortices are part of a toroidal ring centered at an updraft, usually near the cloud top, and they are essential to cumulus entrainment and dynamics. A large number of transects across toroidal circulations are composited to reveal the typical kinematic structure and associated entrainment patterns. The toroidal ring circulation is ~1 km wide and about half as deep in the sampled clouds (Cu mediocris). The composite flow field shows two nearly symmetric, counterrotating vortices, with a core updraft of ~3 m s−1, consistent vortex-top divergence, two flanking downdrafts of the about same strength, and horizontal (toroidal) vorticity of ~0.03 s−1. Variations with vortex size, age, and ambient shear are examined, and the relative dilution of air in the vortex core is estimated by comparing the liquid water content, estimated from path-integrated power attenuation, with the adiabatic value.

Corresponding author address: Yonggang Wang, Department of Atmospheric Science, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071. E-mail: wyg@uwyo.edu

Abstract

High-resolution vertical-plane dual-Doppler velocity data, collected by an airborne profiling cloud radar in transects across nonprecipitating orographic cumulus clouds, are used to examine vortical circulations near cloud top. These vortices are part of a toroidal ring centered at an updraft, usually near the cloud top, and they are essential to cumulus entrainment and dynamics. A large number of transects across toroidal circulations are composited to reveal the typical kinematic structure and associated entrainment patterns. The toroidal ring circulation is ~1 km wide and about half as deep in the sampled clouds (Cu mediocris). The composite flow field shows two nearly symmetric, counterrotating vortices, with a core updraft of ~3 m s−1, consistent vortex-top divergence, two flanking downdrafts of the about same strength, and horizontal (toroidal) vorticity of ~0.03 s−1. Variations with vortex size, age, and ambient shear are examined, and the relative dilution of air in the vortex core is estimated by comparing the liquid water content, estimated from path-integrated power attenuation, with the adiabatic value.

Corresponding author address: Yonggang Wang, Department of Atmospheric Science, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071. E-mail: wyg@uwyo.edu
Save
  • Albrecht, B. A., C. W. Fairall, D. W. Thomson, A. B. White, J. B. Snider, and W. H. Schubert, 1990: Surface-based remote sensing of the observed and the adiabatic liquid water content of stratocumulus clouds. Geophys. Res. Lett., 17, 8992, doi:10.1029/GL017i001p00089.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., and V. G. Plank, 1953: Drop-size history during a shower. J. Meteor., 10, 291295, doi:10.1175/1520-0469(1953)010<0291:DSHDAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., 1993: Entrainment in cumulus clouds. J. Appl. Meteor., 32, 626641, doi:10.1175/1520-0450(1993)032<0626:EICC>2.0.CO;2.

  • Blyth, A. M., W. A. Cooper, and J. B. Jensen, 1988: A study of the source of entrained air in Montana cumuli. J. Atmos. Sci., 45, 39443964, doi:10.1175/1520-0469(1988)045<3944:ASOTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., S. G. Lasher-Trapp, and W. A. Cooper, 2005: A study of thermals in cumulus clouds. Quart. J. Roy. Meteor. Soc., 131, 11711190, doi:10.1256/qj.03.180.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., J. R. McCaa, and H. Grenier, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Mon. Wea. Rev., 132, 864882, doi:10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carpenter, R. L., K. K. Droegemeier, and A. M. Blyth, 1998: Entrainment and detrainment in numerically simulated cumulus congestus clouds. Part III: Parcel analysis. J. Atmos. Sci., 55, 34403455, doi:10.1175/1520-0469(1998)055<3440:EADINS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clark, T. L., T. Hauf, and J. P. Kuettner, 1986: Convectively forced internal gravity waves: Results from two-dimensional numerical experiments. Quart. J. Roy. Meteor. Soc., 112, 899925, doi:10.1002/qj.49711247402.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and G. J. Tripoli, 1978: Cumulus convection in shear flow—three-dimensional numerical experiments. J. Atmos. Sci., 35, 15031521, doi:10.1175/1520-0469(1978)035<1503:CCISFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Craig, G. C., and A. Dörnbrack, 2008: Entrainment in cumulus clouds: What resolution is cloud-resolving? J. Atmos. Sci., 65, 39783988, doi:10.1175/2008JAS2613.1.

    • Search Google Scholar
    • Export Citation
  • Damiani, R., 2005: The structure of thermals in cumulus from airborne dual-Doppler radar observations. Ph.D. thesis, University of Wyoming, 331 pp.

  • Damiani, R., and S. Haimov, 2006: A high-resolution dual-Doppler technique for fixed multi-antenna airborne radar. IEEE Trans. Geosci. Remote Sens., 44, 34753489, doi:10.1109/TGRS.2006.881745.

    • Search Google Scholar
    • Export Citation
  • Damiani, R., and G. Vali, 2007: Evidence for tilted toroidal circulations in cumulus. J. Atmos. Sci., 64, 2045–2060, doi:10.1175/JAS3941.1.

    • Search Google Scholar
    • Export Citation
  • Damiani, R., G. Vali, and S. Haimov, 2006: The structure of thermals in cumulus from airborne dual-Doppler radar observations. J. Atmos. Sci., 63, 1432–1450, doi:10.1175/JAS3701.1.

    • Search Google Scholar
    • Export Citation
  • Damiani, R., and Coauthors, 2008: Cumulus, Photogrammetric, In Situ, and Doppler Observations experiment of 2006. Bull. Amer. Meteor. Soc., 89, 5773, doi:10.1175/BAMS-89-1-57.

    • Search Google Scholar
    • Export Citation
  • Demko, J. C., and B. Geerts, 2010: A numerical study of the evolving convective boundary layer and orographic circulation around the Santa Catalina Mountains in Arizona. Part I: Circulation without deep convection. Mon. Wea. Rev., 138, 19021922, doi:10.1175/2009MWR3098.1.

    • Search Google Scholar
    • Export Citation
  • de Rooy, W., and Coauthors, 2013: Entrainment and detrainment in cumulus convection: An overview. Quart. J. Roy. Meteor. Soc., 139, 119, doi:10.1002/qj.1959.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., Q. Miao, and J. C. Demko, 2008: Pressure perturbations and upslope flow over a heated, isolated mountain. Mon. Wea. Rev., 136, 42724288, doi:10.1175/2008MWR2546.1.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 1993: Cumulus entrainment, fine-scale mixing and buoyancy reversal. Quart. J. Roy. Meteor. Soc., 119, 935956, doi:10.1002/qj.49711951305.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and T. L. Clark, 1993: Cloud-environment interface instability, Part II: Extension to three spatial dimensions. J. Atmos. Sci., 50, 555573, doi:10.1175/1520-0469(1993)050<0555:CEIIPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heus, T., and H. J. J. Jonker, 2008: Subsiding shells around shallow cumulus clouds. J. Atmos. Sci., 65, 10031018, doi:10.1175/2007JAS2322.1.

    • Search Google Scholar
    • Export Citation
  • Heus, T., G. van Dijk, H. J. J. Jonker, and H. E. A. Van den Akker, 2008: Mixing in shallow cumulus clouds studied by Lagrangian particle tracking. J. Atmos. Sci., 65, 25812597, doi:10.1175/2008JAS2572.1.

    • Search Google Scholar
    • Export Citation
  • Johari, H., 1992: Mixing in thermals with and without buoyancy reversal. J. Atmos. Sci., 49, 14121426, doi:10.1175/1520-0469(1992)049<1412:MITWAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jonas, P. R., 1990: Observations of cumulus cloud entrainment. Atmos. Res., 25, 105127, doi:10.1016/0169-8095(90)90008-Z.

  • Khairoutdinov, M., C. DeMott, and D. Randall, 2008: Evaluation of the simulated interannual and subseasonal variability in an AMIP-style simulation using the CSU Multiscale Modeling Framework. J. Climate, 21, 413431, doi:10.1175/2007JCLI1630.1.

    • Search Google Scholar
    • Export Citation
  • Klaassen, G. P., and T. L. Clark, 1985: Dynamics of the cloud-environment interface and entrainment in small cumuli: Two-dimensional simulations in the absence of ambient shear. J. Atmos. Sci., 42, 26212642, doi:10.1175/1520-0469(1985)042<2621:DOTCEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., L. J. Miller, and R. A. Rilling, 2008: Aspects of precipitation development in trade wind cumulus revealed by differential reflectivity at S band. J. Atmos. Sci., 65, 25632580, doi:10.1175/2007JAS2569.1.

    • Search Google Scholar
    • Export Citation
  • Leon, D., J. French, S. Lasher-Trapp, and D. Moser, 2014: Visualizing interactions between convective clouds and their environment using airborne lidar and radar observations. 14th Cloud Physics Conf., Boston, MA, Amer. Meteor. Soc., J1.6. [Available online at https://ams.confex.com/ams/14CLOUD14ATRAD/recordingredirect.cgi/id/27893.]

  • Lhermitte, R., 1990: Attenuation and scattering of millimeter wavelength radiation by clouds and precipitation. J. Atmos. Oceanic Technol., 7, 464–479, doi:10.1175/1520-0426(1990)007<0464:AASOMW>2.0.CO;2.

  • Lopez, R. E., 1977: The lognormal distribution and cumulus cloud populations. Mon. Wea. Rev., 105, 865872, doi:10.1175/1520-0493(1977)105<0865:TLDACC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • MacPherson, J. I., and G. A. Isaac, 1977: Turbulent characteristics of some Canadian cumulus clouds. J. Appl. Meteor., 16, 8190, doi:10.1175/1520-0450(1977)016<0081:TCOSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes.Wiley-Blackwell, 407 pp.

  • Pazmany, A., R. McIntosh, R. Kelly, and G. Vali, 1994: An airborne 95 GHz dual-polarized radar for cloud studies. IEEE Trans. Geosci. Remote Sens., 32, 731739, doi:10.1109/36.298002.

    • Search Google Scholar
    • Export Citation
  • Raga, G. B., J. B. Jensen, and M. B. Baker, 1990: Characteristics of cumulus band clouds off the coast of Hawaii. J. Atmos. Sci., 47, 338356, doi:10.1175/1520-0469(1990)047<0338:COCBCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rodts, S. M. A., P. G. Duynkerke, and H. J. J. Jonker, 2003: Size distributions and dynamical properties of shallow cumulus clouds from aircraft observations and satellite data. J. Atmos. Sci., 60, 18951912, doi:10.1175/1520-0469(2003)060<1895:SDADPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sanchez, O., D. Raymond, L. Libersky, and A. Petschek, 1989: The development of thermals from rest. J. Atmos. Sci., 46, 2280–2292, doi:10.1175/1520-0469(1989)046<2280:TDOTFR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and J. W. M. Cuijpers, 1995: Evaluation of parametric assumptions for shallow convection. J. Atmos. Sci., 52, 650656, doi:10.1175/1520-0469(1995)052<0650:EOPAFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stith, J. L., 1992: Observations of cloud-top entrainment in cumuli. J. Atmos. Sci., 49, 13341347, doi:10.1175/1520-0469(1992)049<1334:OOCTEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. R., and M. B. Baker, 1991: Entrainment and detrainment in cumulus clouds. J. Atmos. Sci., 48, 112121, doi:10.1175/1520-0469(1991)048<0112:EADICC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vali, G., and S. Haimov, 2001: Observed extinction by clouds at 95 GHz. IEEE Trans. Geosci. Remote Sens., 39, 190193, doi:10.1109/36.898682.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and B. Geerts, 2010: Humidity variations across the edge of trade wind cumuli: Observations and dynamical implications. Atmos. Res., 97, 144156, doi:10.1016/j.atmosres.2010.03.017.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and B. Geerts, 2011: Observations of detrainment signatures from non-precipitating orographic cumulus clouds. Atmos. Res., 99, 302324, doi:10.1016/j.atmosres.2010.10.023.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and B. Geerts, 2013: Composite vertical structure of vertical velocity in nonprecipitating cumulus clouds. Mon. Wea. Rev., 141, 16731692, doi:10.1175/MWR-D-12-00047.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., B. Geerts, and J. French, 2009: Dynamics of the cumulus cloud margin: An observational study. J. Atmos. Sci., 66, 36603677, doi:10.1175/2009JAS3129.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Coauthors, 2012: Single aircraft integration of remote sensing and in situ sampling for the study of cloud microphysics and dynamics. Bull. Amer. Meteor. Soc., 93, 653668, doi:10.1175/BAMS-D-11-00044.1.

    • Search Google Scholar
    • Export Citation
  • Warner, J., 1977: Time variation of updraft and water content in small cumulus clouds. J. Atmos. Sci., 34, 13061312, doi:10.1175/1520-0469(1977)034<1306:TVOUAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., and R. M. Welch, 1986: Cumulus cloud properties derived using Landsat satellite data. J. Climate Appl. Meteor., 25, 261276, doi:10.1175/1520-0450(1986)025<0261:CCPDUL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Woodward, B., 1959: The motion in and around isolated thermals. Quart. J. Roy. Meteor. Soc., 85, 144151, doi:10.1002/qj.49708536407.

  • Zhao, M., and P. H. Austin, 2005: Life cycle of numerically simulated shallow cumulus clouds. Part II: Mixing dynamics. J. Atmos. Sci., 62, 12911310, doi:10.1175/JAS3415.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 401 155 96
PDF Downloads 159 34 4