Evaluation of the Lidar–Radar Cloud Ice Water Content Retrievals Using Collocated in Situ Measurements

Sujan Khanal University of Wyoming, Laramie, Wyoming

Search for other papers by Sujan Khanal in
Current site
Google Scholar
PubMed
Close
and
Zhien Wang University of Wyoming, Laramie, Wyoming

Search for other papers by Zhien Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Remote sensing and in situ measurements made during the Colorado Airborne Multiphase Cloud Study, 2010–2011 (CAMPS) with instruments aboard the University of Wyoming King Air aircraft are used to evaluate lidar–radar-retrieved cloud ice water content (IWC). The collocated remote sensing and in situ measurements provide a unique dataset for evaluation studies. Near-flight-level IWC retrieval is compared with an in situ probe: the Colorado closed-path tunable diode laser hygrometer (CLH). Statistical analysis showed that the mean radar–lidar IWC is within 26% of the mean in situ measurements for pure ice clouds and within 9% for liquid-topped mixed-phase clouds. Considering their different measurement techniques and different sample volumes, the comparison shows a statistically good agreement and is close to the measurement uncertainty of the CLH, which is around 20%. It is shown that ice cloud microphysics including ice crystal shape and orientation has a significant impact on IWC retrievals. These results indicate that the vertical profile of the retrieved lidar–radar IWC can be reliably combined with the flight-level measurements made by the in situ probes to provide a more complete picture of the cloud microphysics.

Corresponding author address: Sujan Khanal, Dept. of Atmospheric Science, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071. E-mail: skhanal@uwyo.edu

Abstract

Remote sensing and in situ measurements made during the Colorado Airborne Multiphase Cloud Study, 2010–2011 (CAMPS) with instruments aboard the University of Wyoming King Air aircraft are used to evaluate lidar–radar-retrieved cloud ice water content (IWC). The collocated remote sensing and in situ measurements provide a unique dataset for evaluation studies. Near-flight-level IWC retrieval is compared with an in situ probe: the Colorado closed-path tunable diode laser hygrometer (CLH). Statistical analysis showed that the mean radar–lidar IWC is within 26% of the mean in situ measurements for pure ice clouds and within 9% for liquid-topped mixed-phase clouds. Considering their different measurement techniques and different sample volumes, the comparison shows a statistically good agreement and is close to the measurement uncertainty of the CLH, which is around 20%. It is shown that ice cloud microphysics including ice crystal shape and orientation has a significant impact on IWC retrievals. These results indicate that the vertical profile of the retrieved lidar–radar IWC can be reliably combined with the flight-level measurements made by the in situ probes to provide a more complete picture of the cloud microphysics.

Corresponding author address: Sujan Khanal, Dept. of Atmospheric Science, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071. E-mail: skhanal@uwyo.edu
Save
  • Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899, doi:10.1175/2009JAS2883.1.

    • Search Google Scholar
    • Export Citation
  • Baker, B., and R. P. Lawson, 2006: In situ observations of the microphysical properties of wave, cirrus and anvil clouds. Part I: Wave clouds. J. Atmos. Sci., 63, 31603185, doi:10.1175/JAS3802.1.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., T. P. Ackerman, G. G. Mace, K. P. Moran, R. T. Marchand, M. A. Miller, and B. E. Martner, 2000: Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteor., 39, 645665, doi:10.1175/1520-0450(2000)039<0645:ODOCHA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, S. M., L. M. Avallone, E. M. Weinstock, C. H. Twohy, J. B. Smith, and G. L. Kok, 2007a: Comparisons of in situ measurements of cirrus cloud ice water content. J. Geophys. Res., 112, D10212, doi:10.1029/2006JD008214.

    • Search Google Scholar
    • Export Citation
  • Davis, S. M., A. G. Hallar, L. M. Avallone, and W. E. Engblom, 2007b: Measurement of total water content with a tunable diode laser hygrometer: Inlet analysis, calibration procedure, and ice water content determination. J. Atmos. Oceanic Technol., 24, 463475, doi:10.1175/JTECH1975.1.

    • Search Google Scholar
    • Export Citation
  • Deng, M., G. G. Mace, Z. Wang, and H. Okamoto, 2010: Tropical Composition, Cloud and Climate Coupling Experiment validation for cirrus cloud profiling retrieval using CloudSat radar and CALIPSO lidar. J. Geophys. Res., 115, D00J15, doi:10.1029/2009JD013104.

    • Search Google Scholar
    • Export Citation
  • Deng, M., G. G. Mace, Z. Wang, and R. P. Lawson, 2013: Evaluation of several A-Train ice cloud retrieval products with in situ measurements collected during the SPARTICUS campaign. J. Appl. Meteor. Climatol., 52, 10141030, doi:10.1175/JAMC-D-12-054.1.

    • Search Google Scholar
    • Export Citation
  • Donovan, D. P., and A. C. A. P. van Lammeren, 2001: Cloud effective particle size and water content profile retrievals using combined lidar and radar observations. 1. Theory and examples. J. Geophys. Res., 106, 27 42527 448, doi:10.1029/2001JD900243.

    • Search Google Scholar
    • Export Citation
  • Febvre, G., J.-F. Gayet, V. Shcherbakov, C. Gourbeyre, and O. Jourdan, 2012: Some effects of ice crystals on the FSSP measurements in mixed phase clouds. Atmos. Chem. Phys., 12, 89638977, doi:10.5194/acp-12-8963-2012.

    • Search Google Scholar
    • Export Citation
  • Fernald, F. G., 1984: Analysis of atmospheric lidar observations: Some comments. Appl. Opt., 23, 652653, doi:10.1364/AO.23.000652.

  • Fu, Q., 1996: An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate, 9, 20582082, doi:10.1175/1520-0442(1996)009<2058:AAPOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gardiner, B. A., and J. Hallett, 1985: Degradation of in-cloud forward scattering spectrometer probe measurements in the presence of ice particles. J. Atmos. Oceanic Technol., 2, 171180, doi:10.1175/1520-0426(1985)002<0171:DOICFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gerber, H., B. G. Arends, and A. S. Ackerman, 1994: New microphysics sensor for aircraft use. Atmos. Res., 31, 235252, doi:10.1016/0169-8095(94)90001-9.

    • Search Google Scholar
    • Export Citation
  • Gultepe, I., and G. A. Isaac, 1997: Liquid water content and temperature relationship from aircraft observations and its applicability to GCMs. J. Climate, 10, 446452, doi:10.1175/1520-0442(1997)010<0446:LWCATR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haimov, S., and A. Rodi, 2013: Fixed-antenna pointing-angle calibration of airborne Doppler cloud radar. J. Atmos. Oceanic Technol., 30, 23202335, doi:10.1175/JTECH-D-12-00262.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 2007: On measurements of small ice particles in clouds. Geophys. Res. Lett., 34, L23812, doi:10.1029/2007GL030951.

  • Heymsfield, A. J., K. M. Miller, and J. D. Spinhirne, 1990: The 27–28 October 1986 FIRE IFO cirrus case study: Cloud microstructure. Mon. Wea. Rev., 118, 23132328, doi:10.1175/1520-0493(1990)118<2313:TOFICC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and Coauthors, 2008: Testing IWC retrieval methods using radar and ancillary measurements with in situ data. J. Appl. Meteor. Climatol., 47, 135163, doi:10.1175/2007JAMC1606.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., and Coauthors, 1996: The EDOP radar system on the high-altitude NASA ER-2 aircraft. J. Atmos. Oceanic Technol., 13, 795809, doi:10.1175/1520-0426(1996)013<0795:TERSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., Z. Liu, D. Winker, M. Vaughan, V. Noel, L. Bissonnette, G. Roy, and M. McGill, 2006: A simple relation between lidar multiple scattering and depolarization for water clouds. Opt. Lett., 31, 18091811, doi:10.1364/OL.31.001809.

    • Search Google Scholar
    • Export Citation
  • Klett, J. D., 1981: Stable analytical inversion solution for processing lidar returns. Appl. Opt., 20, 211220, doi:10.1364/AO.20.000211.

    • Search Google Scholar
    • Export Citation
  • Knollenberg, R. G., 1981: Techniques for probing cloud microstructure. Clouds, Their Formation, Optical Properties, and Effects, P. V. Hobbs, Ed., Academic Press, 15–91.

  • Korolev, A. V., A. N. Nevzorov, J. W. Strapp, and G. A. Isaac, 1998: The Nevzorov airborne hot-wire LWC–TWC probe: Principle of operation and performance characteristics. J. Atmos. Oceanic Technol., 15, 14951510, doi:10.1175/1520-0426(1998)015<1495:TNAHWL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lance, S., C. A. Brock, D. Rogers, and J. A. Gordon, 2010: Water droplet calibration of the cloud droplet probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC. Atmos. Meas. Tech., 3, 16831706, doi:10.5194/amt-3-1683-2010.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., and B. A. Baker, 2006: Improvement in determination of ice water content from two-dimensional particle imagery. Part II: Applications to collected data. J. Appl. Meteor., 45, 12911303, doi:10.1175/JAM2399.1.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., G. Zhang, M. R. Poellot, G. L. Kok, R. McCoy, T. Tooman, A. Fridlind, and A. J. Heymsfield, 2007: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment (MPACE): 1. Observations. J. Geophys. Res., 112, D24201, doi:10.1029/2007JD008633.

    • Search Google Scholar
    • Export Citation
  • McGill, M. J., D. Hlavka, W. Hart, V. S. Scott, J. Spinhirne, and B. Schmid, 2002: Cloud physics lidar: Instrument description and initial measurement results. Appl. Opt., 41, 37253734, doi:10.1364/AO.41.003725.

    • Search Google Scholar
    • Export Citation
  • Okamoto, H., S. Iwasaki, M. Yasui, H. Horie, H. Kuroiwa, and H. Kumagai, 2003: An algorithm for retrieval of cloud microphysics using 95-GHz cloud radar and lidar. J. Geophys. Res., 108, 4226, doi:10.1029/2001JD001225.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riédi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473, doi:10.1109/TGRS.2002.808301.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., 1981: Remote sounding of high clouds. Part III: Monte Carlo calculations of multiple scattered lidar returns. J. Atmos. Sci., 38, 156167, doi:10.1175/1520-0469(1981)038<0156:RSOHCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pokharel, B., and G. Vali, 2011: Evaluation of collocated measurements of radar reflectivity and particle sizes in ice clouds. J. Appl. Meteor. Climatol., 50, 21042119, doi:10.1175/JAMC-D-10-05010.1.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1991: The polarization lidar technique for cloud research: A review and current assessment. Bull. Amer. Meteor. Soc., 72, 18481866, doi:10.1175/1520-0477(1991)072<1848:TPLTFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schwarzenboeck, A., G. Mioche, A. Armetta, A. Herber, and J.-F. Gayet, 2009: Response of the Nevzorov hot wire probe in clouds dominated by droplet conditions in the drizzle size range. Atmos. Meas. Tech., 2, 779788, doi:10.5194/amt-2-779-2009.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, doi:10.1175/BAMS-83-12-1771.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003: Dynamics and Chemistry of Marine Stratocumulus—DYCOMS-II. Bull. Amer. Meteor. Soc., 84, 579593, doi:10.1175/BAMS-84-5-579.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and K. Sassen, 2001: Cloud type and macrophysical property retrieval using multiple remote sensors. J. Appl. Meteor., 40, 16651683, doi:10.1175/1520-0450(2001)040<1665:CTAMPR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and K. Sassen, 2002: Cirrus cloud microphysical property retrieval using lidar and radar measurements. Part I: Algorithm description and comparison with in situ data. J. Appl. Meteor., 41, 218229, doi:10.1175/1520-0450(2002)041<0218:CCMPRU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., G. M. Heymsfield, L. Li, and A. J. Heymsfield, 2005: Retrieving optically thick ice cloud microphysical properties by using airborne dual-wavelength radar measurements. J. Geophys. Res., 110, D19201, doi:10.1029/2005JD005969.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., P. Wechsler, W. Kuestner, J. French, A. Rodi, B. Glover, M. Burkhart, and D. Lukens, 2009: Wyoming Cloud Lidar: Instrument description and applications. Opt. Express, 17, 13 57613 587, doi:10.1364/OE.17.013576.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Coauthors, 2012: Single aircraft integration of remote sensing and in situ sampling for the study of cloud microphysics and dynamics. Bull. Amer. Meteor. Soc., 93, 653–668, doi:10.1175/BAMS-D-11-00044.1.

  • Yorks, J. E., D. L. Hlavka, W. D. Hart, and M. J. McGill, 2011: Statistics of cloud optical properties from airborne lidar measurements. J. Atmos. Oceanic Technol., 28, 869883, doi:10.1175/2011JTECHA1507.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1669 1324 442
PDF Downloads 267 76 17