Dual-Polarization Radar Data Analysis of the Impact of Ground-Based Glaciogenic Seeding on Winter Orographic Clouds. Part II: Convective Clouds

Xiaoqin Jing Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Xiaoqin Jing in
Current site
Google Scholar
PubMed
Close
and
Bart Geerts Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Bart Geerts in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This second paper of a two-part series aims to explore the ground-based glaciogenic seeding impact on wintertime orographic clouds using an X-band dual-polarization radar. It focuses on three cases with shallow to moderately deep orographic convection that were observed in January–February of 2012 as part of the AgI Seeding Cloud Impact Investigation (ASCII) project over the Sierra Madre in Wyoming. In each of the storms the bulk upstream Froude number exceeded 1, suggesting unblocked flow. Low-level potential instability was present, explaining orographic convection. The clouds contained little supercooled liquid water on account of the low cloud-base temperature. Ice-crystal photography shows that snow mainly grew by diffusion and aggregation. To examine the seeding effect of silver iodide (AgI), five study areas are defined: two target areas and three control areas. Comparisons are made between the control and target areas as well as between a treated, or seeded, period and an untreated period. Low-level reflectivity tends to increase in the target areas relative to the control. This increase is larger in the lee target area than in the upwind target area, suggesting that precipitation enhancement is delayed in the presence of convection. The echo tops of the convective cells are not higher during seeding, relative to simultaneous changes in the control regions. This result suggests that the dynamic-seeding mechanism does not apply for the cold-base convective clouds that are studied here. An analysis of differential reflectivity and snow photography suggests that static seeding is the more likely snow-enhancement mechanism in these clouds.

Corresponding author address: Xiaoqin Jing, Dept. of Atmospheric Science, University of Wyoming, Laramie, WY 82071. E-mail: xjing@uwyo.edu

Abstract

This second paper of a two-part series aims to explore the ground-based glaciogenic seeding impact on wintertime orographic clouds using an X-band dual-polarization radar. It focuses on three cases with shallow to moderately deep orographic convection that were observed in January–February of 2012 as part of the AgI Seeding Cloud Impact Investigation (ASCII) project over the Sierra Madre in Wyoming. In each of the storms the bulk upstream Froude number exceeded 1, suggesting unblocked flow. Low-level potential instability was present, explaining orographic convection. The clouds contained little supercooled liquid water on account of the low cloud-base temperature. Ice-crystal photography shows that snow mainly grew by diffusion and aggregation. To examine the seeding effect of silver iodide (AgI), five study areas are defined: two target areas and three control areas. Comparisons are made between the control and target areas as well as between a treated, or seeded, period and an untreated period. Low-level reflectivity tends to increase in the target areas relative to the control. This increase is larger in the lee target area than in the upwind target area, suggesting that precipitation enhancement is delayed in the presence of convection. The echo tops of the convective cells are not higher during seeding, relative to simultaneous changes in the control regions. This result suggests that the dynamic-seeding mechanism does not apply for the cold-base convective clouds that are studied here. An analysis of differential reflectivity and snow photography suggests that static seeding is the more likely snow-enhancement mechanism in these clouds.

Corresponding author address: Xiaoqin Jing, Dept. of Atmospheric Science, University of Wyoming, Laramie, WY 82071. E-mail: xjing@uwyo.edu
Save
  • Breed, D., R. Rasmussen, C. Weeks, B. Boe, and T. Deshler, 2014: Evaluating winter orographic cloud seeding: Design of the Wyoming Weather Modification Pilot Project (WWMPP). J. Appl. Meteor. Climatol., 53, 282299, doi:10.1175/JAMC-D-13-0128.1.

    • Search Google Scholar
    • Export Citation
  • Bruintjes, R. T., 1999: A review of cloud seeding experiments to enhance precipitation and some new prospects. Bull. Amer. Meteor. Soc., 80, 805820, doi:10.1175/1520-0477(1999)080<0805:AROCSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chu, X., L. Xue, B. Geerts, R. Rasmussen, and D. Breed, 2014: A case study of radar observations and WRF LES simulations of the impact of ground-based glaciogenic seeding on orographic clouds and precipitation. Part I: Observations and model validations. J. Appl. Meteor. Climatol., 53, 22642286, doi:10.1175/JAMC-D-14-0017.1.

    • Search Google Scholar
    • Export Citation
  • Chu, X., B. Geerts, and L. Xue, 2015: Cloud-resolving large eddy simulations of the impact of ground-based glaciogenic seeding on shallow convective orographic clouds and precipitation. 20th Conf. on Planned and Inadvertent Weather Modification, Phoenix, AZ, Amer. Meteor. Soc., 5.4. [Available online at https://ams.confex.com/ams/95Annual/webprogram/Paper267584.html.]

  • Freud, E., H. Koussevitzky, T. Goren, and D. Rosenfeld, 2015: Cloud microphysical background for the Israel-4 cloud seeding experiment. Atmos. Res., 158–159, 122138, doi:10.1016/j.atmosres.2015.02.007.

    • Search Google Scholar
    • Export Citation
  • Fukuta, N., and T. Takahashi, 1999: The growth of atmospheric ice crystals: A summary of findings in vertical supercooled cloud tunnel studies. J. Atmos. Sci., 56, 19631979, doi:10.1175/1520-0469(1999)056<1963:TGOAIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gabriel, K. R., 1999: Ratio statistics for randomized experiments in precipitation stimulation. J. Appl. Meteor., 38, 290301, doi:10.1175/1520-0450(1999)038<0290:RSFREI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gagin, A., and J. Neumann, 1981: The second Israeli randomized cloud seeding experiment: Evaluation of the results. J. Appl. Meteor., 20, 13011311, doi:10.1175/1520-0450(1981)020<1301:TSIRCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gagin, A., D. Rosenfeld, and R. E. Lopez, 1985: The relationship between height and precipitation characteristics of summertime convective cells in south Florida. J. Atmos. Sci., 42, 8494, doi:10.1175/1520-0469(1985)042<0084:TRBHAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., Q. Miao, Y. Yang, R. Rasmussen, and D. Breed, 2010: An airborne profiling radar study of the impact of glaciogenic cloud seeding on snowfall from winter orographic clouds. J. Atmos. Sci., 67, 32863301, doi:10.1175/2010JAS3496.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2013: The AgI Seeding Cloud Impact Investigation (ASCII) campaign 2012: Overview and preliminary results. J. Wea. Modif., 45, 2443.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., Y. Yang, R. Rasmussen, S. Haimov, and B. Pokharel, 2015: Snow growth and transport patterns in orographic storms as estimated from airborne vertical-plane dual-Doppler radar data. Mon. Wea. Rev., 143, 644665, doi:10.1175/MWR-D-14-00199.1.

    • Search Google Scholar
    • Export Citation
  • Grant, L. O., and R. E. Elliott, 1974: The cloud seeding temperature window. J. Appl. Meteor., 13, 355363, doi:10.1175/1520-0450(1974)013<0355:TCSTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hallet, J., 1981: Ice crystal evolution in Florida summer cumuli following AgI seeding. Preprints, Eighth Conf. on Inadvertent and Planned Weather Modification, Reno, NV, Amer. Meteor. Soc., 114–115.

  • Hashimoto, A., T. Kato, S. Hayashi, and M. Murakami, 2008: Seedability assessment for winter orographic snow clouds over the Echigo Mountains. SOLA, 4, 6972, doi:10.2151/sola.2008-018.

    • Search Google Scholar
    • Export Citation
  • Holroyd, E. W., J. T. McPartland, and A. B. Super, 1988: Observation of silver iodide plumes over the Grand Mesa of Colorado. J. Appl. Meteor., 27, 11251144, doi:10.1175/1520-0450(1988)027<1125:OOSIPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huggins, A. W., 2007: Another wintertime cloud seeding case study with strong evidence of seeding effects. J. Wea. Modif., 39, 936.

  • Isaac, G. A., R. S. Schemenauer, C. L. Crozier, A. J. Chisholm, J. I. Macpherson, N. R. Bobbitt, and L. B. Machattie, 1977: Preliminary tests of a cumulus cloud seeding technique. J. Appl. Meteor., 16, 949958, doi:10.1175/1520-0450(1977)016<0949:PTOACC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Isaac, G. A., J. W. Strapp, R. S. Schemenauer, and J. I. Macpherson, 1982: Summer cumulus cloud seeding experiments near Yellowknife and Thunder Bay, Canada. J. Appl. Meteor., 21, 12661285, doi:10.1175/1520-0450(1982)021<1266:SCCSEN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jing, X., B. Geerts, and K. Friedrich, 2015: Dual-polarization radar data analysis of the impact of ground-based glaciogenic seeding on winter orographic clouds. Part I: Mostly stratiform clouds. J. Appl. Meteor. Climatol., 54, 19451970, doi:10.1175/JAMC-D-14-0257.1.

    • Search Google Scholar
    • Export Citation
  • Lawson, P., B. A. Baker, P. Zmarzly, D. O’Connor, Q. Mo, J.-F. Gayet, and V. Shcherbakov, 2006: Microphysical and optical properties of atmospheric ice crystals at South Pole Station. J. Appl. Meteor. Climatol., 45, 15051524, doi:10.1175/JAM2421.1.

    • Search Google Scholar
    • Export Citation
  • Libbrecht, K. G., 2005: The physics of snow crystals. Rep. Prog. Phys., 68, 855895, doi:10.1088/0034-4885/68/4/R03.

  • Manton, M. J., L. Warren, S. L. Kenyon, A. D. Peace, S. P. Bilish, and K. Kemsley, 2011: A confirmatory snowfall enhancement project in the Snowy Mountains of Australia. Part I: Project design and response variables. J. Appl. Meteor. Climatol., 50, 14321447, doi:10.1175/2011JAMC2659.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., C. Campbell, D. Kingsmill, and E. Sukovich, 2009: Assessing snowfall rates from X-band radar reflectivity measurements. J. Atmos. Oceanic Technol., 26, 23242339, doi:10.1175/2009JTECHA1238.1.

    • Search Google Scholar
    • Export Citation
  • Orville, H. D., 1996: A review of cloud modeling in weather modification. Bull. Amer. Meteor. Soc., 77, 15351555, doi:10.1175/1520-0477(1996)077<1535:AROCMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Plummer, D. M., S. Göke, R. M. Rauber, and L. D. Girolamo, 2010: Discrimination of mixed- versus ice-phase clouds using dual-polarization radar with application to detection of aircraft icing regions. J. Appl. Meteor. Climatol., 49, 920936, doi:10.1175/2009JAMC2267.1.

    • Search Google Scholar
    • Export Citation
  • Pokharel, B., B. Geerts, X. Jing, K. Friedrich, J. Aikins, D. Breed, R. Rasmussen, and A. Huggins, 2014: The impact of ground-based glaciogenic seeding on clouds and precipitation over mountains: A multi-sensor case study of shallow precipitating orographic cumuli. Atmos. Res., 147–148, 162182, doi:10.1016/j.atmosres.2014.05.014.

    • Search Google Scholar
    • Export Citation
  • Pokharel, B., B. Geerts, and X. Jing, 2015a: The impact of ground-based glaciogenic seeding on clouds and precipitation over mountains: A case study of a shallow orographic cloud with large supercooled droplets. J. Geophys. Res. Atmos., 120, 60566079, doi:10.1002/2014JD022693.

    • Search Google Scholar
    • Export Citation
  • Rangno, A. L., and P. V. Hobbs, 1995: A new look at the Israeli cloud seeding experiments. J. Appl. Meteor., 34, 11691193, doi:10.1175/1520-0450(1995)034<1169:ANLATI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and W. L. Woodley, 1989: Effects of cloud seeding in west Texas. J. Appl. Meteor., 28, 10501080, doi:10.1175/1520-0450(1989)028<1050:EOCSIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and W. L. Woodley, 1993: Effects of cloud seeding in west Texas: Additional results and new insights. J. Appl. Meteor., 32, 18481866, doi:10.1175/1520-0450(1993)032<1848:EOCSIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryan, B. F., and W. D. King, 1997: A critical review of the Australian experience in cloud seeding. Bull. Amer. Meteor. Soc., 78, 239254, doi:10.1175/1520-0477(1997)078<0239:ACROTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 2007: Depolarization in ice crystals and its effect on radar polarimetric measurements. J. Atmos. Oceanic Technol., 24, 12561267, doi:10.1175/JTECH2034.1.

    • Search Google Scholar
    • Export Citation
  • Sax, R. I., J. Thomas, M. Bonebrake, and J. Hallett, 1979: Ice evolution within seeded and nonseeded Florida cumuli. J. Appl. Meteor., 18, 203214, doi:10.1175/1520-0450(1979)018<0203:IEWSAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., and W. L. Woodley, 1971: Seeding cumulus in Florida: New 1970 results. Science, 172, 117126, doi:10.1126/science.172.3979.117.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., G. W. Brier, and R. H. Simpson, 1967: Stormfury cumulus seeding experiment 1965: Statistical analysis and main results. J. Atmos. Sci., 24, 508521, doi:10.1175/1520-0469(1967)024<0508:SCSESA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, P. L., and Coauthors, 1984: HIPLEX-1: Experimental design and response variables. J. Climate Appl. Meteor., 23, 497512, doi:10.1175/1520-0450(1984)023<0497:HEDARV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, E. J., S. A. Rutledge, B. Dolan, V. Chandrasekar, and B. L. Cheong, 2014: A dual-polarization radar hydrometeor classification algorithm for winter precipitation. J. Atmos. Oceanic Technol., 31, 14571481, doi:10.1175/JTECH-D-13-00119.1.

    • Search Google Scholar
    • Export Citation
  • Vali, G., L. R. Koenig, and T. C. Yoksas, 1988: Estimate of precipitation enhancement potential for the Duero basin of Spain. J. Appl. Meteor., 27, 829850, doi:10.1175/1520-0450(1988)027<0829:EOPEPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., S. M. Ellis, R. Oye, D. S. Zrnić, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388, doi:10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, P. K., and W. Ji, 2000: Collision efficiencies of ice crystals at low-intermediate Reynolds numbers colliding with supercooled cloud droplets: A numerical study. J. Atmos. Sci., 57, 10011009, doi:10.1175/1520-0469(2000)057<1001:CEOICA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 1986: Synopsis of the WMO Precipitation Enhancement Project—1985. Precipitation Enhancement Project Rep. 34, 97 pp.

  • Woodley, W. L., J. Jordan, J. Simpson, R. Biondini, J. A. Flueck, and A. Barnston, 1982: Rainfall results of the Florida Area Cumulus Experiment, 1970–76. J. Appl. Meteor., 21, 139164, doi:10.1175/1520-0450(1982)021<0139:RROTFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, doi:10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 780 283 2
PDF Downloads 208 74 2