• Andric, J., , M. R. Kumjian, , D. S. Zrnić, , J. M. Straka, , and V. M. Melnikov, 2013: Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. J. Appl. Meteor. Climatol., 52, 682700, doi:10.1175/JAMC-D-12-028.1.

    • Search Google Scholar
    • Export Citation
  • Auer, A. A., , and D. L. Veal, 1970: The dimensions of ice crystals in natural clouds. J. Atmos. Sci., 27, 919926, doi:10.1175/1520-0469(1970)027<0919:TDOICI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bader, M. J., , S. A. Clough, , and G. P. Cox, 1987: Aircraft and dual polarization observations of hydrometeors in light stratiform precipitation. Quart. J. Roy. Meteor. Soc., 113, 491515, doi:10.1002/qj.49711347605.

    • Search Google Scholar
    • Export Citation
  • Bailey, M. P., , and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899, doi:10.1175/2009JAS2883.1.

    • Search Google Scholar
    • Export Citation
  • Bechini, R., , L. Baldini, , and V. Chandrasekar, 2013: Polarimetric radar observations in the ice region of precipitating clouds at C-band and X-band radar frequencies. J. Appl. Meteor. Climatol., 52, 11471169, doi:10.1175/JAMC-D-12-055.1.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., , and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar. Cambridge University Press, 636 pp.

  • Byers, H. R., 1965: Elements of Cloud Physics. University of Chicago Press, 191 pp.

  • Caylor, L. J., , and V. Chandrasekhar, 1996: Time-varying ice crystal orientation in thunderstorms observed with multi-parameter radar. IEEE Trans. Geosci. Remote Sens., 34, 847858, doi:10.1109/36.508402.

    • Search Google Scholar
    • Export Citation
  • Chauzy, S., , D. Raisonville, , D. Hauser, , and F. Roux, 1980: Electrical and dynamical description of a frontal storm deduced from the LANDES 79 experiment. Proc. Eighth Int. Conf. on Cloud Physics, Clermont-Ferrand, France, Amer. Meteor. Soc., 477480.

  • Cifelli, R., , and S. A. Rutledge, 1994: Vertical motion structure in Maritime Continent mesoscale convective systems: Results from a 50-MHz profiler. J. Atmos. Sci., 51, 26312652, doi:10.1175/1520-0469(1994)051<2631:VMSIMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cunningham, J., , W. D. Zittel, , R. R. Lee, , and R. L. Lee, 2013: Methods for identifying systematic differential reflectivity (Zdr) biases on the operational WSR-88D network. Proc. Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor. Soc., 9B.5. [Available online at https://ams.confex.com/ams/36Radar/webprogram/Paper228792.html.]

  • Dissanayake, A. W., , M. Chandra, , and P. A. Watson, 1983: Prediction of differential reflectivity due to various types of ice particles and ice-water mixtures. Third Int. Conf. on Antennas and Propagation, Norwich, United Kingdom, IEE Publ. 219, 56–59.

  • Engholm, C. D., , E. R. Williams, , and R. M. Dole, 1990: Meteorological and electrical conditions associated with positive cloud-to-ground lightning. Mon. Wea. Rev., 118, 470487, doi:10.1175/1520-0493(1990)118<0470:MAECAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Evaristo, R., , T. M. Bals-Elsholz, , E. R. Williams, , D. J. Smalley, , M. F. Donovan, , and A. Fenn, 2013: Relationship of graupel shape to differential reflectivity: Theory and observations. Proc. 29th Conf. on Environmental Information Processing Technologies, Austin, TX, Amer. Meteor. Soc., 14. [Available online at https://ams.confex.com/ams/93Annual/webprogram/Paper214462.html.]

  • Field, P. R., , R. J. Hogan, , P. R. A. Brown, , A. J. Illingworth, , T. W. Choularton, , P. H. Kaye, , E. Hirst, , and R. Greenaway, 2004: Simultaneous radar and aircraft observations of mixed-phase cloud at the 100-m-scale. Quart. J. Roy. Meteor. Soc., 130, 18771904, doi:10.1256/qj.03.102.

    • Search Google Scholar
    • Export Citation
  • Foster, T. C., , and J. Hallett, 2002: The alignment of ice crystals in changing electric fields. Atmos. Res., 62, 149169, doi:10.1016/S0169-8095(02)00008-X.

    • Search Google Scholar
    • Export Citation
  • Foster, T. C., , and J. Hallett, 2008: Enhanced alignment of plate ice crystals in a non-uniform electric field. Atmos. Res., 90, 4153, doi:10.1016/j.atmosres.2008.02.017.

    • Search Google Scholar
    • Export Citation
  • Hall, M. P., , W. F. Goddard, , and S. M. Cherry, 1984: Identification of hydrometeors and other targets by dual polarization radar. Radio Sci., 19, 132140, doi:10.1029/RS019i001p00132.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., , and B. J. Mason, 1958: The influence of temperature and supersaturation on the habit of ice crystals grown from the vapor. Proc. Roy. Soc. London, 247A, 440453, doi:10.1098/rspa.1958.0199.

    • Search Google Scholar
    • Export Citation
  • Herzegh, P. H., , and J. W. Conway, 1986: On the morphology of dual-polarization radar measurements: Distinguishing meteorological effects from radar system effects. Preprints, 23rd Conf. on Radar Meteorology, Vol. 1, Snowmass, CO, Amer. Meteor. Soc., 5558.

  • Hogan, R. J., , P. R. Field, , A. J. Illingworth, , R. J. Cotton, , and T. W. Choularton, 2002: Properties of embedded convection in warm-frontal mixed-phase cloud from aircraft and polarimetric radar data. Quart. J. Roy. Meteor. Soc., 128, 451476, doi:10.1256/003590002321042054.

    • Search Google Scholar
    • Export Citation
  • Hudak, D., , B. Currie, , P. Rodriguez, , S. G. Cober, , I. Zawadzki, , G. A. Isaac, , and M. Wolde, 2002: Cloud phase detection in winter stratiform clouds using polarimetric Doppler radar. Second European Conf. on Radar Meteorology, Delft, Netherlands, ERAD, 9094.

  • Jameson, A. R., , M. J. Murphy, , and E. P. Krider, 1996: Multiple-parameter radar observations of isolated Florida thunderstorms during the onset of electrification. J. Appl. Meteor., 35, 343354, doi:10.1175/1520-0450(1996)035<0343:MPROOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., , and S. A. Rutledge, 2011: S-band dual polarization radar observations in winter storms. J. Appl. Meteor. Climatol., 50, 844858, doi:10.1175/2010JAMC2558.1.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., , and N. C. Knight, 1973: Conical graupel. J. Atmos. Sci., 30, 118124, doi:10.1175/1520-0469(1973)030<0118:CG>2.0.CO;2.

  • Korolev, A., 2007: Limitations of the Wegener–Bergeron–Findeisen mechanism in the evolution of mixed-phase clouds. J. Atmos. Sci., 64, 33723375, doi:10.1175/JAS4035.1.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., , and I. P. Mazin, 2003: Supersaturation of water vapor in clouds. J. Atmos. Sci., 60, 29572974, doi:10.1175/1520-0469(2003)060<2957:SOWVIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., , and G. A. Isaac, 2006: Relative humidity in liquid, mixed-phase, and ice clouds. J. Atmos. Sci., 63, 28652880, doi:10.1175/JAS3784.1.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., , and P. R. Field, 2008: The effect of dynamics on mixed-phase clouds: Theoretical considerations. J. Atmos. Sci., 65, 6686, doi:10.1175/2007JAS2355.1.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., , G. A. Isaac, , and J. Hallett, 1999: Ice particle habits in Arctic clouds. Geophys. Res. Lett., 26, 12991302, doi:10.1029/1999GL900232.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., , G. A. Isaac, , and J. Hallett, 2000: Ice particle habits in stratiform clouds. Quart. J. Roy. Meteor. Soc., 126, 28732902, doi:10.1002/qj.49712656913.

    • Search Google Scholar
    • Export Citation
  • Krehbiel, P., , T. Chen, , S. McCrary, , W. Rison, , G. Gray, , and M. Brook, 1996: The use of dual channel circular-polarization radar observations for remotely sensing storm electrification. Meteor. Atmos. Phys., 59, 6582, doi:10.1007/BF01032001.

    • Search Google Scholar
    • Export Citation
  • Magono, C., , and C. W. Lee, 1966: Meteorological classification of natural snow crystals. J. Fac. Sci., Hokkaido Univ., Ser. 7, 2, 321–335.

    • Search Google Scholar
    • Export Citation
  • Marshall, T. C., , M. P. McCarthy, , and W. D. Rust, 1995: Electric field magnitudes and lightning initiation in thunderstorms. J. Geophys. Res., 100, 70977103, doi:10.1029/95JD00020.

    • Search Google Scholar
    • Export Citation
  • Mason, B. J., , G. W. Bryant, , and A. P. van den Heuvel, 1963: The growth habits and surface structures of ice crystals. Philos. Mag., 8, 505526, doi:10.1080/14786436308211150.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., , R. F. Reinking, , and I. V. Djalalova, 2005: Inferring fall attitudes of pristine dendritic crystals from polarimetric radar data. J. Atmos. Sci., 62, 241250, doi:10.1175/JAS-3356.1.

    • Search Google Scholar
    • Export Citation
  • Metcalf, J. I., 1993: Radar observations of the effects of changing electric fields of thunderstorms. Bull. Amer. Meteor. Soc., 74, 10801083.

    • Search Google Scholar
    • Export Citation
  • Metcalf, J. I., 1995: Radar observations of changing orientations of hydrometeors in thunderstorms. J. Appl. Meteor., 34, 757772, doi:10.1175/1520-0450(1995)034<0757:ROOCOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Metcalf, J. I., 1997: Temporal and spatial variations of hydrometeor orientations in thunderstorms. J. Appl. Meteor., 36, 315321, doi:10.1175/1520-0450(1997)036<0315:TASVOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moisseev, D., , E. Saltikoff, , and M. Leskinen, 2009: Dual-polarization weather radar observations of snow growth processes. Preprints, 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., 13B.2. [Available online at https://ams.confex.com/ams/pdfpapers/156123.pdf.]

  • Moisseev, D., , S. Lautaportti, , L. Bliven, , V. Chandraskekar, , and M. Kulmala, 2012: Aggregation growth of snowflakes observed by radar and ground-based particle video imager. 16th Int. Conf. on Clouds and Precipitation, Leipzig, Germany, International Commission on Clouds and Precipitation–International Association of Meteorology and Atmospheric Sciences, P4.30. [Available online at http://iccp2012.tropos.de/.]

  • Noel, V., , and K. Sassen, 2005: Study of planar ice crystal orientation in ice clouds from scanning polarization lidar observations. J. Appl. Meteor., 44, 653664, doi:10.1175/JAM2223.1.

    • Search Google Scholar
    • Export Citation
  • Plummer, D. A., , S. Goke, , R. M. Rauber, , and L. Di Girokamo, 2010: Discrimination of mixed-phase versus ice-phase clouds using dual-polarization radar with application to detection of aircraft icing regions. J. Appl. Meteor. Climatol., 49, 920936, doi:10.1175/2009JAMC2267.1.

    • Search Google Scholar
    • Export Citation
  • Russell, B., and et al. , 2010: Radar/rain-gauge comparisons on squall lines in Niamey, Niger for the AMMA. Quart. J. Roy. Meteor. Soc., 136, 289303, doi:10.1002/qj.548.

    • Search Google Scholar
    • Export Citation
  • Sauvageot, H., , K. Kouadio, , and C.-A. Etty, 1986: The influence of temperature and supersaturation on the polarization of radar signals. Preprints, Conf. on Radar Meteorology, Vol. 1, Snowmass, CO, Amer. Meteor. Soc., 173176.

  • Schaefer, V. J., , and J. A. Day, 1981: A Field Guide to the Atmosphere. Houghton Mifflin, 359 pp.

  • Seliga, T. A., , and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 6976, doi:10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steinert, J., , and M. Chandra, 2009: Classification of ice crystals at C-band. Adv. Radio Sci., 7, 273277, doi:10.5194/ars-7-273-2009.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 15361548, doi:10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 2010: The videosonde system and its use in the study of East Asian monsoon rain. Bull. Amer. Meteor. Soc., 91, 12321246, doi:10.1175/2010BAMS2777.1.

    • Search Google Scholar
    • Export Citation
  • Teschl, F., , W. L. Randeu, , M. Schönhuber, , and R. Teschl, 2008: Simulation of polarimetric radar variables in rain at S-, C-, and X-band wavelengths. Adv. Geosci., 16, 2732, doi:10.5194/adgeo-16-27-2008.

    • Search Google Scholar
    • Export Citation
  • Thompson, E. J., , S. A. Rutledge, , B. Dolan, , V. Chandrasekhar, , and B. L. Cheong, 2014: A dual-polarization radar hydrometeor classification algorithm for winter precipitation. J. Atmos. Oceanic Technol., 31, 14571481, doi:10.1175/JTECH-D-13-00119.1.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., , V. N. Bringi, , M. Hagen, , and P. Meischner, 1994: Polarimetric radar studies of atmospheric ice particles. IEEE Trans. Geosci. Remote Sens., 32, 19, doi:10.1109/36.285183.

    • Search Google Scholar
    • Export Citation
  • Weinheimer, A. J., , and A. A. Few, 1987: The electric field alignment of ice particles in thunderstorms. J. Geophys. Res., 92, 14 83314 844, doi:10.1029/JD092iD12p14833.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., 1989: The tripole structure of thunderstorms. J. Geophys. Res., 94, 13 15113 167, doi:10.1029/JD094iD11p13151.

  • Williams, E. R., , and W. Ecklund, 1992: 50 MHz profiler observations of trailing stratiform precipitation: Constraints on microphysics and in situ charge separation. Preprints, 11th Conf. on Clouds and Precipitation, Montreal, QC, Canada, International Commission on Clouds and Precipitation–International Association of Meteorology and Atmospheric Sciences, 754–757.

  • Williams, E. R., and et al. , 2011: Dual polarization radar winter storm studies supporting development of NEXRAD-based aviation hazards products. Proc. 35th Conf. on Radar Meteorology, Pittsburgh, PA, Amer. Meteor. Soc., 202. [Available online at https://ams.confex.com/ams/35Radar/webprogram/Paper191770.html.]

  • Williams, E. R., , D. Smalley, , M. Donovan, , R. Hallowell, , M. Wolde, , M. Bastian, , A. Korolev, , and R. Evaristo, 2013a: Validation of NEXRAD radar differential reflectivity measurements in snowstorms with airborne microphysical measurements: Evidence for hexagonal flat plate crystals. Proc. 36th Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor. Soc., 15A.6. [Available online at https://ams.confex.com/ams/36Radar/webprogram/Paper228791.html.]

  • Williams, E. R., and et al. , 2013b: End-to-end calibration of NEXRAD differential reflectivity with metal spheres. Proc. 36th Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor. Soc., 15.316. [Available online at https://ams.confex.com/ams/36Radar/webprogram/Paper228796.html.]

  • Williams, E. R., , M. F. Donovan, , D. J. Smalley, , R. G. Hallowell, , E. Griffin, , K. T. Hood, , and B. J. Bennett, 2015: The 2013 Buffalo Area Icing and Radar Study (BAIRS). MIT Lincoln Lab. Rep. ATC-419, 132 pp.

  • Wolde, M., , and G. Vali, 2001a: Polarimetric signatures from ice crystals observed at 95 GHz in winter clouds. Part I: Dependence of crystal form. J. Atmos. Sci., 58, 828841, doi:10.1175/1520-0469(2001)058<0828:PSFICO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wolde, M., , and G. Vali, 2001b: Polarimetric signatures from ice crystals observed at 95 GHz in winter clouds. Part II: Frequencies of occurrence. J. Atmos. Sci., 58, 842849, doi:10.1175/1520-0469(2001)058<0842:PSFICO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., , N. Balakrishan, , C. L. Ziegler, , V. N. Bringi, , K. Aydin, , and T. Matejka, 1993: Polarimetric signatures in the stratiform region of a mesoscale convective system. J. Appl. Meteor., 32, 678693, doi:10.1175/1520-0450(1993)032<0678:PSITSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., , R. Doviak, , G. Zhang, , and A. Ryzhkov, 2010: Bias in differential reflectivity due to cross coupling through the radiation patterns of polarimetric weather radars. J. Atmos. Oceanic Technol., 27, 16241637, doi:10.1175/2010JTECHA1350.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 210 210 105
PDF Downloads 51 51 7

Measurements of Differential Reflectivity in Snowstorms and Warm Season Stratiform Systems

View More View Less
  • 1 Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts
  • | 2 Valparaiso University, Valparaiso, Indiana
  • | 3 Environment Canada, Toronto, Ontario, Canada
  • | 4 National Research Council of Canada, Ottawa, Ontario, Canada
© Get Permissions
Restricted access

Abstract

The organized behavior of differential radar reflectivity (ZDR) is documented in the cold regions of a wide variety of stratiform precipitation types occurring in both winter and summer. The radar targets and attendant cloud microphysical conditions are interpreted within the context of measurements of ice crystal types in laboratory diffusion chambers in which humidity and temperature are both stringently controlled. The overriding operational interest here is in the identification of regions prone to icing hazards with long horizontal paths. Two predominant regimes are identified: category A, which is typified by moderate reflectivity (from 10 to 30 dBZ) and modest +ZDR values (from 0 to +3 dB) in which both supercooled water and dendritic ice crystals (and oriented aggregates of ice crystals) are present at a mean temperature of −13°C, and category B, which is typified by small reflectivity (from −10 to +10 dBZ) and the largest +ZDR values (from +3 to +7 dB), in which supercooled water is dilute or absent and both flat-plate and dendritic crystals are likely. The predominant positive values for ZDR in many case studies suggest that the role of an electric field on ice particle orientation is small in comparison with gravity. The absence of robust +ZDR signatures in the trailing stratiform regions of vigorous summer squall lines may be due both to the infusion of noncrystalline ice particles (i.e., graupel and rimed aggregates) from the leading deep convection and to the effects of the stronger electric fields expected in these situations. These polarimetric measurements and their interpretations underscore the need for the accurate calibration of ZDR.

Corresponding author address: Earle Williams, MIT Lincoln Laboratory, 244 Wood St., Lexington, MA 02420. E-mail: earlew@ll.mit.edu

Abstract

The organized behavior of differential radar reflectivity (ZDR) is documented in the cold regions of a wide variety of stratiform precipitation types occurring in both winter and summer. The radar targets and attendant cloud microphysical conditions are interpreted within the context of measurements of ice crystal types in laboratory diffusion chambers in which humidity and temperature are both stringently controlled. The overriding operational interest here is in the identification of regions prone to icing hazards with long horizontal paths. Two predominant regimes are identified: category A, which is typified by moderate reflectivity (from 10 to 30 dBZ) and modest +ZDR values (from 0 to +3 dB) in which both supercooled water and dendritic ice crystals (and oriented aggregates of ice crystals) are present at a mean temperature of −13°C, and category B, which is typified by small reflectivity (from −10 to +10 dBZ) and the largest +ZDR values (from +3 to +7 dB), in which supercooled water is dilute or absent and both flat-plate and dendritic crystals are likely. The predominant positive values for ZDR in many case studies suggest that the role of an electric field on ice particle orientation is small in comparison with gravity. The absence of robust +ZDR signatures in the trailing stratiform regions of vigorous summer squall lines may be due both to the infusion of noncrystalline ice particles (i.e., graupel and rimed aggregates) from the leading deep convection and to the effects of the stronger electric fields expected in these situations. These polarimetric measurements and their interpretations underscore the need for the accurate calibration of ZDR.

Corresponding author address: Earle Williams, MIT Lincoln Laboratory, 244 Wood St., Lexington, MA 02420. E-mail: earlew@ll.mit.edu
Save