• Adeyewa, Z. D., , and K. Nakamura, 2003: Validation of TRMM radar rainfall data over major climatic regions in Africa. J. Appl. Meteor. Climatol., 42, 331347, doi:10.1175/1520-0450(2003)042<0331:VOTRRD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bitew, M. M., , and M. Gebremichael, 2011: Are satellite-gauge rainfall products better than satellite-only products for Nile hydrology? Nile River Basin, A. M. Melesse, Ed., Springer-Verlag, 129–141.

  • Breiman, L., 1996: Bagging predictors. Mach. Learn., 24, 123140.

  • Breiman, L., , J. H. Friedman, , R. A. Olsen, , and C. J. Stone, 1984: Classification and Regression Trees. Wadsworth Statistics and Probability Series, Taylor and Francis, 368 pp.

  • Dinku, T., , P. Ceccato, , E. Grover-Kopec, , M. Lemma, , S. J. Connor, , and C. F. Ropelewski, 2007: Validation of satellite rainfall products over East Africa’s complex topography. Int. J. Remote Sens., 28, 15031524, doi:10.1080/01431160600954688.

    • Search Google Scholar
    • Export Citation
  • Dinku, T., , S. Chidzambwa, , P. Ceccato, , S. J. Connor, , and C. F. Ropelewski, 2008: Validation of high-resolution satellite rainfall products over complex terrain. Int. J. Remote Sens., 29, 40974110, doi:10.1080/01431160701772526.

    • Search Google Scholar
    • Export Citation
  • Dinku, T., , S. J. Connor, , and P. Ceccato, 2010: Comparison of CMORPH and TRMM-3B42 over mountainous regions of Africa and South America. Satellite Rainfall Applications for Surface Hydrology, M. Gebremichael and F. Hossain, Eds., Springer-Verlag, 193–204.

  • Ebert, E. E., , J. E. Janowiak, , and C. Kidd, 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 4764, doi:10.1175/BAMS-88-1-47.

    • Search Google Scholar
    • Export Citation
  • Gabella, M., , S. Michaelides, , P. Constantinides, , and G. Perona, 2006: Climatological validation of TRMM Precipitation Radar monthly rain products over Cyprus during the first 5 years (December 1997 to November 2002). Meteor. Z., 15, 559564, doi:10.1127/0941-2948/2006/0158.

    • Search Google Scholar
    • Export Citation
  • Gabella, M., , S. Athanasatos, , R. Notarpietro, , and S. Michaelides, 2008: Climatological validation of TRMM radar monthly rainfall amounts over Cyprus during the first 8 years (December 1997–November 2005). Fifth European Conf. on Radar in Meteorology and Hydrology, Helsinki, Finland, ERAD, 5 pp. [Available online at http://www.erad2010.org/pdf/POSTER/Wednesday/03_Satellite/03_ERAD2010_0023_extended.pdf.]

  • Herrmann, S., , and K. A. Mohr, 2011: A continental-scale classification of rainfall seasonality regimes in Africa based on gridded precipitation and land surface temperature products. J. Appl. Meteor. Climatol., 50, 25042513, doi:10.1175/JAMC-D-11-024.1.

    • Search Google Scholar
    • Export Citation
  • Hijmans, R. J., , S. E. Cameron, , J. L. Parra, , P. Jones, , and A. Jarvis, 2005: Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25, 19651978, doi:10.1002/joc.1276.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 21792196, doi:10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., 2013: README for accessing experimental real-time TRMM Multi-Satellite Precipitation Analysis (TMPA-RT) data sets. NASA Goddard Space Flight Center Mesoscale Atmospheric Processes Laboratory Rep., 11 pp. [Available online at ftp://meso-a.gsfc.nasa.gov/pub/trmmdocs/rt/3B4XRT_README.pdf.]

  • Huffman, G. J., , and D. T. Bolvin, 2014: TRMM and other data precipitation data set documentation: “Recent” news. NASA Goddard Space Flight Center Mesoscale Atmospheric Processes Laboratory Rep., 42 pp. [Available online at ftp://precip.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc.pdf.]

  • Huffman, G. J., and et al. , 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 520, doi:10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., , R. F. Adler, , D. T. Bolvin, , G. Gu, , E. J. Nelkin, , K. P. Bowman, , E. F. Stocker, , and D. B. Wolff, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., , R. F. Adler, , D. T. Bolvin, , and E. J. Nelkin, 2010: The TRMM Multi-satellite Precipitation Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, F. Hossain and M. Gebremichael, Eds., Springer-Verlag, 3–22.

  • Köppen, W., 1884: Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet (The thermal zones of the earth according to the duration of hot, moderate and cold periods and to the impact of heat on the organic world). Meteor. Z.,1, 215–226; E. Volken and S. Brönnimann, Trans. and Eds., 2011: Meteor. Z.,20, 351–360, doi:10.1127/0941-2948/2011/105.

  • Köppen, W., 1918: Klassification der Klimate nach Temperatur, Niederschlag und Jahreslauf (Classification of climates according to temperature, precipitation and seasonal cycle). Petermanns Geogr. Mitt., 64, 193203, 243248. [Available online at http://koeppen-geiger.vu-wien.ac.at/pdf/Koppen_1918.pdf.]

    • Search Google Scholar
    • Export Citation
  • Kottek, M., , J. Grieser, , C. Beck, , B. Rudolf, , and F. Rubel, 2006: World map of the Köppen–Geiger climate classification updated. Meteor. Z., 15, 259263, doi:10.1127/0941-2948/2006/0130.

    • Search Google Scholar
    • Export Citation
  • McGregor, G. R., , and S. Nieuwolt, 1998: Tropical Climatology. 2nd ed. John Wiley and Sons, 339 pp.

  • Nicholson, S. E., 2000: The nature of rainfall variability over Africa on time scales of decades to millennia. Global Planet. Change, 26, 137158, doi:10.1016/S0921-8181(00)00040-0.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., and et al. , 2003: Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part II: Validation of TRMM rainfall products. J. Appl. Meteor. Climatol., 42, 13551368, doi:10.1175/1520-0450(2003)042<1355:VOTAOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peel, M. C., , B. L. Finlayson, , and T. A. McMahon, 2007: Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 16331644, doi:10.5194/hess-11-1633-2007.

    • Search Google Scholar
    • Export Citation
  • Roca, R., , P. Chambon, , I. Jobard, , P. E. Kirstetter, , M. Gosset, , andJ. C. Berges, 2010: Comparing satellite and surface rainfall products over West Africa at meteorologically relevant scales during the AMMA campaign using errors estimates. J. Appl. Meteor. Climatol., 49, 715731, doi:10.1175/2009JAMC2318.1.

    • Search Google Scholar
    • Export Citation
  • Rudolf, B., 1993: Management and analysis of precipitation data on a routine basis. Proc. Int. WMO/IAHS/ETH Symp. on Precipitation and Evaporation, Bratislava, Slovakia, Slovak Hydrometeorology Institute, 6976.

  • Rudolf, B., , H. Hauschild, , W. Ruth, , and U. Schneider, 1994: Terrestrial precipitation analysis: Operational method and required density of point measurements. Global Precipitations and Climate Change, M. Dubois and F. Desalmand, Eds., Springer-Verlag, 173–186.

  • Schumacher, C., , and R. A. Houze Jr., 2003: Stratiform rain in the tropics as seen by the TRMM Precipitation Radar. J. Climate, 16, 17391756, doi:10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Suzuki, T., 2011: Seasonal variation of the ITCZ and its characteristics over central Africa. Theor. Appl. Climatol., 103, 3960, doi:10.1007/s00704-010-0276-9.

    • Search Google Scholar
    • Export Citation
  • Tierney, J. E., , J. M. Russell, , J. S. Sinninghe Damsté, , Y. Huang, , and D. Verschuren, 2011: Late Quaternary behavior of the East African monsoon and the importance of the Congo air boundary. Quat. Sci. Rev., 30, 798807, doi:10.1016/j.quascirev.2011.01.017.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., , and C. Gauthier, 1993: A satellite-derived climatology of the ITCZ. J. Climate, 6, 21622174, doi:10.1175/1520-0442(1993)006<2162:ASDCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., and et al. , 2014: Widespread decline of Congo rainforest greenness in the past decade. Nature, 509, 8690, doi:10.1038/nature13265.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 302 302 29
PDF Downloads 229 229 29

Characterizing Congo Basin Rainfall and Climate Using Tropical Rainfall Measuring Mission (TRMM) Satellite Data and Limited Rain Gauge Ground Observations

View More View Less
  • 1 Department of Geographical Sciences, University of Maryland, College Park, College Park, Maryland
  • | 2 Radius Technology Group, Inc., Silver Spring, Maryland
  • | 3 U.S. Geological Survey Earth Resources Observation and Science Center, Sioux Falls, South Dakota
© Get Permissions
Restricted access

Abstract

Quantitative understanding of Congo River basin hydrological behavior is poor because of the basin’s limited hydrometeorological observation network. In cases such as the Congo basin where ground data are scarce, satellite-based estimates of rainfall, such as those from the joint NASA/JAXA Tropical Rainfall Measuring Mission (TRMM), can be used to quantify rainfall patterns. This study tests and reports the use of limited rainfall gauge data within the Democratic Republic of Congo (DRC) to recalibrate a TRMM science product (TRMM 3B42, version 6) in characterizing precipitation and climate in the Congo basin. Rainfall estimates from TRMM 3B42, version 6, are compared and adjusted using ground precipitation data from 12 DRC meteorological stations from 1998 to 2007. Adjustment is achieved on a monthly scale by using a regression-tree algorithm. The output is a new, basin-specific estimate of monthly and annual rainfall and climate types across the Congo basin. This new product and the latest version-7 TRMM 3B43 science product are validated by using an independent long-term dataset of historical isohyets. Standard errors of the estimate, root-mean-square errors, and regression coefficients r were slightly and uniformly better with the recalibration from this study when compared with the 3B43 product (mean monthly standard errors of 31 and 40 mm of precipitation and mean r2 of 0.85 and 0.82, respectively), but the 3B43 product was slightly better in terms of bias estimation (1.02 and 1.00). Despite reasonable doubts that have been expressed in studies of other tropical regions, within the Congo basin the TRMM science product (3B43) performed in a manner that is comparable to the performance of the recalibrated product that is described in this study.

Corresponding author address: Matthew C. Hansen, Dept. of Geographical Sciences, University of Maryland, College Park, 2181 Samuel J. LeFrak Hall, College Park, MD 20742. E-mail: mhansen@umd.edu

Abstract

Quantitative understanding of Congo River basin hydrological behavior is poor because of the basin’s limited hydrometeorological observation network. In cases such as the Congo basin where ground data are scarce, satellite-based estimates of rainfall, such as those from the joint NASA/JAXA Tropical Rainfall Measuring Mission (TRMM), can be used to quantify rainfall patterns. This study tests and reports the use of limited rainfall gauge data within the Democratic Republic of Congo (DRC) to recalibrate a TRMM science product (TRMM 3B42, version 6) in characterizing precipitation and climate in the Congo basin. Rainfall estimates from TRMM 3B42, version 6, are compared and adjusted using ground precipitation data from 12 DRC meteorological stations from 1998 to 2007. Adjustment is achieved on a monthly scale by using a regression-tree algorithm. The output is a new, basin-specific estimate of monthly and annual rainfall and climate types across the Congo basin. This new product and the latest version-7 TRMM 3B43 science product are validated by using an independent long-term dataset of historical isohyets. Standard errors of the estimate, root-mean-square errors, and regression coefficients r were slightly and uniformly better with the recalibration from this study when compared with the 3B43 product (mean monthly standard errors of 31 and 40 mm of precipitation and mean r2 of 0.85 and 0.82, respectively), but the 3B43 product was slightly better in terms of bias estimation (1.02 and 1.00). Despite reasonable doubts that have been expressed in studies of other tropical regions, within the Congo basin the TRMM science product (3B43) performed in a manner that is comparable to the performance of the recalibrated product that is described in this study.

Corresponding author address: Matthew C. Hansen, Dept. of Geographical Sciences, University of Maryland, College Park, 2181 Samuel J. LeFrak Hall, College Park, MD 20742. E-mail: mhansen@umd.edu
Save