• Barcikowska, M., , F. Feser, , and H. von Storch, 2012: Usability of best track data in climate statistics in the western North Pacific. Mon. Wea. Rev., 140, 28182830, doi:10.1175/MWR-D-11-00175.1.

    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., , R. D. Torn, , C. Snyder, , C. Davis, , W. Wang, , and J. Done, 2013: Evaluation of the Advanced Hurricane WRF data assimilation system for the 2009 Atlantic hurricane season. Mon. Wea. Rev., 141, 523541, doi:10.1175/MWR-D-12-00139.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C., and et al. , 2008a: Prediction of landfalling hurricanes with the Advanced Hurricane WRF Model. Mon. Wea. Rev., 136, 19902005, doi:10.1175/2007MWR2085.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C., , S. C. Jones, , and M. Riemer, 2008b: Hurricane vortex dynamics during Atlantic extratropical transition. J. Atmos. Sci., 65, 714736, doi:10.1175/2007JAS2488.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C., , W. Wang, , J. Dudhia, , and R. Torn, 2010: Does increased horizontal resolution improve hurricane wind forecasts? Wea. Forecasting, 25, 18261841, doi:10.1175/2010WAF2222423.1.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., , S. Aberson, , K. V. Ooyama, , and S. J. Lord, 1992: A nested spectral model for hurricane track forecasting. Mon. Wea. Rev., 120, 16281643, doi:10.1175/1520-0493(1992)120<1628:ANSMFH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., , S. Ravela, , E. Vivant, , and C. Risi, 2006: A statistical deterministic approach to hurricane risk assessment. Bull. Amer. Meteor. Soc., 87, 299314, doi:10.1175/BAMS-87-3-299.

    • Search Google Scholar
    • Export Citation
  • Fujibe, F., , and N. Kitabatake, 2007: Classification of surface wind fields of tropical cyclones at landfall on the Japan main islands. J. Meteor. Soc. Japan, 85, 747765, doi:10.2151/jmsj.85.747.

    • Search Google Scholar
    • Export Citation
  • Georgiou, P. N., 1985: Design windspeeds in tropical cyclone-prone regions. Ph.D. thesis, University of Western Ontario, London, ON, Canada, 295 pp.

  • Grieser, J., , and S. Jewson, 2012: The RMS TC-rain model. Meteor. Z., 21, 7988, doi:10.1127/0941-2948/2012/0265.

  • Haigh, I. D., , L. R. MacPherson, , M. S. Mason, , E. M. S. Wijeratne, , C. B. Pattiaratchi, , R. P. Crompton, , and S. George, 2014: Estimating present day extreme total water level exceedance probabilities around the coastline of Australia: Tropical cyclone-induced storm surges. Climate Dyn., 42, 139157, doi:10.1007/s00382-012-1653-0.

    • Search Google Scholar
    • Export Citation
  • Hall, T. M., , and S. Jewson, 2007: Statistical modeling of North Atlantic tropical cyclone tracks. Tellus, 59A, 486498, doi:10.1111/j.1600-0870.2007.00240.x.

    • Search Google Scholar
    • Export Citation
  • Harper, B. A., , and G. J. Holland, 1999: An updated parametric model of the tropical cyclone. Preprints, 23rd Conf. of Hurricane and Tropical Meteorology, Dallas, TX, 893896.

  • Harr, P. A., , and R. L. Elsberry, 2000: Extratropical transition of tropical cyclones over the western North Pacific. Part I: Evolution of structural characteristics during the transition process. Mon. Wea. Rev., 128, 26132633, doi:10.1175/1520-0493(2000)128<2613:ETOTCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., 2003: A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Wea. Rev., 131, 585616, doi:10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1980: An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108, 12121218, doi:10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , J. Dudhia, , and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of cloud and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , Y. Noh, , and J. Dudhia, 2006: A new vertical diffusion package with explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • James, M. K., , and L. B. Mason, 2005: Synthetic tropical cyclone database. J. Waterw. Port Coastal Ocean Eng., 131, 181192, doi:10.1061/(ASCE)0733-950X(2005)131:4(181).

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., and et al. , 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 10521092, doi:10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., , and J. M. Fritsch, 1990: A one-dimensional entraining detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khare, S. P., , A. Bonazzi, , N. West, , E. Bellone, , and S. Jewson, 2009: On the modelling of over-ocean hurricane surface winds and their uncertainty. Quart. J. Roy. Meteor. Soc., 135, 13501365, doi:10.1002/qj.442.

    • Search Google Scholar
    • Export Citation
  • Kitabatake, N., 2011: Climatology of extratropical transition of tropical cyclones in the western North Pacific defined by using cyclone phase space. J. Meteor. Soc. Japan, 89, 309325, doi:10.2151/jmsj.2011-402.

    • Search Google Scholar
    • Export Citation
  • Kitabatake, N., , and F. Fujibe, 2009: Relationship between surface wind fields and three-dimensional structures of tropical cyclones landfalling in the main islands of Japan. J. Meteor. Soc. Japan, 87, 959977, doi:10.2151/jmsj.87.959.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., , M. DeMaria, , D. A. Molenar, , C. R. Sampson, , and M. G. Seybold, 2011: An automated, objective, multiple-satellite-platform tropical cyclone surface wind analysis. J. Appl. Meteor. Climatol., 50, 21492166, doi:10.1175/2011JAMC2673.1.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., , M. C. Kruk, , D. H. Levinson, , H. J. Diamond, , and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , J. A. Knaff, , H. I. Berger, , D. C. Herndon, , T. A. Cram, , C. S. Velden, , R. J. Murnane, , and J. D. Hawkins, 2007: Estimating hurricane wind structure in the absence of aircraft reconnaissance. Wea. Forecasting, 22, 89101, doi:10.1175/WAF985.1.

    • Search Google Scholar
    • Export Citation
  • Loridan, T., , E. Scherer, , M. Dixon, , E. Bellone, , and S. Khare, 2014: Cyclone wind field asymmetries during extratropical transition in the western North Pacific. J. Appl. Meteor. Climatol., 53, 421428, doi:10.1175/JAMC-D-13-0257.1.

    • Search Google Scholar
    • Export Citation
  • MacAfee, A. W., , and G. M. Pearson, 2006: Development and testing of tropical cyclone parametric wind models tailored for midlatitude application—Preliminary results. J. Appl. Meteor. Climatol., 45, 12441260, doi:10.1175/JAM2407.1.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., , S. J. Taubman, , P. D. Brown, , M. J. Iacono, , and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Mueller, K. J., , M. DeMaria, , J. A. Knaff, , J. P. Kossin, , and T. H. Vonder Haar, 2005: Objective estimation of tropical cyclone wind structure from infrared satellite data. Wea. Forecasting,21, 990–1005, doi:10.1175/WAF955.1.

  • Phadke, A. C., , C. D. Martino, , K. F. Cheung, , and S. H. Houston, 2003: Modeling of tropical cyclone winds and waves for emergency management. Ocean Eng., 30, 553578, doi:10.1016/S0029-8018(02)00033-1.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., , S. H. Houston, , L. R. Amat, , and N. Morisseau-Leroy, 1998: The HRD real-time hurricane wind analysis system. J. Wind Eng. Indust. Aerodyn.,77–78, 53–64.

  • Powell, M. D., , G. Soukup, , S. Cocke, , S. Gulati, , N. Morisseau-Leroy, , S. Hamid, , N. Dorst, , and L. Axe, 2005: State of Florida hurricane loss projection model: Atmospheric science component. J. Ind. Aerodyn., 93, 651674, doi:10.1016/j.jweia.2005.05.008.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., , Z. Liu, , X.-Y. Huang, , Y.-H. Kuo, , and C.-T. Fong, 2013: Comparing limited-area 3DVAR and hybrid variational-ensemble data assimilation methods for typhoon track forecasts: Sensitivity to outer loops and vortex relocation. Mon. Wea. Rev., 141, 43504372, doi:10.1175/MWR-D-13-00028.1.

    • Search Google Scholar
    • Export Citation
  • Shea, D. J., , and W. M. Gray, 1973: The hurricane’s inner core region: Symmetric and asymmetric structure. J. Atmos. Sci., 30, 15441564, doi:10.1175/1520-0469(1973)030<1544:THICRI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN–475+STR, 113 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Torn, R. D., 2010: Performance of a mesoscale ensemble Kalman Filter (EnKF) during the NOAA High-Resolution Hurricane Test. Mon. Wea. Rev., 138, 43754392, doi:10.1175/2010MWR3361.1.

    • Search Google Scholar
    • Export Citation
  • van Leeuwen, P. J., 2009: Particle filtering in geophysical systems. Mon. Wea. Rev., 137, 40894114, doi:10.1175/2009MWR2835.1.

  • Vickery, P. J., , P. F. Skerlj, , and L. A. Twisdale Jr., 2000: Simulation of hurricane risk in the US using an empirical track model. J. Struct. Eng., 126, 12221237, doi:10.1061/(ASCE)0733-9445(2000)126:10(1222).

    • Search Google Scholar
    • Export Citation
  • Vickery, P. J., , F. J. Masters, , M. D. Powell, , and D. Wadhera, 2009a: Hurricane hazard modeling: The past, present, and future. J. Wind Eng. Ind. Aerodyn., 97, 392405, doi:10.1016/j.jweia.2009.05.005.

    • Search Google Scholar
    • Export Citation
  • Vickery, P. J., , D. Wadhera, , L. A. Twisdale Jr., , and F. M. Lavelle, 2009b: U.S. hurricane wind speed risk and uncertainty. J. Struct. Eng.,135, 301–320, doi:10.1061/(ASCE)0733-9445(2009)135:3(301).

  • Wang, X., 2011: Application of the WRF hybrid ETKF–3DVAR data assimilation system for hurricane track forecasts. Wea. Forecasting, 26, 868884, doi:10.1175/WAF-D-10-05058.1.

    • Search Google Scholar
    • Export Citation
  • Weng, Y., , and F. Zhang, 2012: Assimilating airborne Doppler radar observations with an ensemble Kalman filter for convection-permitting hurricane initialization and prediction: Katrina (2005). Mon. Wea. Rev., 140, 841859, doi:10.1175/2011MWR3602.1.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., , and M. E. Rahn, 2004: Parametric representation of the primary hurricane vortex. Part I: Observations and evaluation of the Holland (1980) model. Mon. Wea. Rev., 132, 30333048, doi:10.1175/MWR2831.1.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., , R. W. R. Darling, , and M. E. Rahn, 2006: Parametric representation of the primary hurricane vortex. Part II: A family of sectionally continuous profiles. Mon. Wea. Rev., 134, 11021120, doi:10.1175/MWR3106.1.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., , G.-Y. Lien, , J.-H. Chen, , and F. Zhang, 2010: Assimilation of tropical cyclone track and structure based on the ensemble Kalman filter (EnKF). J. Atmos. Sci., 67, 38063822, doi:10.1175/2010JAS3444.1.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., , Y.-H. Huang, , and G.-Y. Lien, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part I: Assimilation of T-PARC data based on the ensemble Kalman filter (EnKF). Mon. Wea. Rev., 140, 506527, doi:10.1175/MWR-D-11-00057.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 103 103 9
PDF Downloads 97 97 15

Parametric Modeling of Transitioning Cyclone Wind Fields for Risk Assessment Studies in the Western North Pacific

View More View Less
  • 1 Risk Management Solutions, London, United Kingdom
© Get Permissions
Restricted access

Abstract

Probabilistic risk assessment systems for tropical cyclone hazards rely on large ensembles of model simulations to characterize cyclones tracks, intensities, and the extent of the associated damaging winds. Given the computational costs, the wind field is often modeled using parametric formulations that make assumptions that are based on observations of tropical systems (e.g., satellite, or aircraft reconnaissance). In particular, for the Northern Hemisphere, most of the damaging contribution is assumed to be from the right of the moving cyclone, with the left-hand-side winds being much weaker because of the direction of storm motion. Recent studies have highlighted that this asymmetry assumption does not hold for cyclones undergoing extratropical transitions around Japan. Transitioning systems can exhibit damaging winds on both sides of the moving cyclone, with wind fields often characterized as resembling a horseshoe. This study develops a new parametric formulation of the extratropical transition phase for application in risk assessment systems. A compromise is sought between the need to characterize the horseshoe shape while keeping the formulation simple to allow for implementation within a risk assessment framework. For that purpose the tropical wind model developed by Willoughby et al. is selected as a starting point and parametric bias correction fields are applied to build the target shape. Model calibration is performed against a set of 37 extratropical transition cases simulated using the Weather Research and Forecasting Model. This newly developed parametric model of the extratropical transition phase shows an ability to reproduce wind field features observed in the western North Pacific Ocean while using only a restricted number of input parameters.

Denotes Open Access content.

Corresponding author address: T. Loridan, Risk Management Solutions, Peninsular House, 30 Monument St., London EC3R 8NB, United Kingdom. E-mail: thomas.loridan@gmail.com

Abstract

Probabilistic risk assessment systems for tropical cyclone hazards rely on large ensembles of model simulations to characterize cyclones tracks, intensities, and the extent of the associated damaging winds. Given the computational costs, the wind field is often modeled using parametric formulations that make assumptions that are based on observations of tropical systems (e.g., satellite, or aircraft reconnaissance). In particular, for the Northern Hemisphere, most of the damaging contribution is assumed to be from the right of the moving cyclone, with the left-hand-side winds being much weaker because of the direction of storm motion. Recent studies have highlighted that this asymmetry assumption does not hold for cyclones undergoing extratropical transitions around Japan. Transitioning systems can exhibit damaging winds on both sides of the moving cyclone, with wind fields often characterized as resembling a horseshoe. This study develops a new parametric formulation of the extratropical transition phase for application in risk assessment systems. A compromise is sought between the need to characterize the horseshoe shape while keeping the formulation simple to allow for implementation within a risk assessment framework. For that purpose the tropical wind model developed by Willoughby et al. is selected as a starting point and parametric bias correction fields are applied to build the target shape. Model calibration is performed against a set of 37 extratropical transition cases simulated using the Weather Research and Forecasting Model. This newly developed parametric model of the extratropical transition phase shows an ability to reproduce wind field features observed in the western North Pacific Ocean while using only a restricted number of input parameters.

Denotes Open Access content.

Corresponding author address: T. Loridan, Risk Management Solutions, Peninsular House, 30 Monument St., London EC3R 8NB, United Kingdom. E-mail: thomas.loridan@gmail.com
Save