• Andreas, E. L, , and B. B. Hicks, 2002: Comments on “Critical test of the validity of Monin–Obukhov similarity during convective conditions.” J. Atmos. Sci., 59, 26052607, doi:10.1175/1520-0469(2002)059<2605:COCTOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, , L. Mahrt, , and D. Vickers, 2012: A new drag relation for aerodynamically rough flow over the ocean. J. Atmos. Sci., 69, 25202537, doi:10.1175/JAS-D-11-0312.1.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, , L. Mahrt, , and D. Vickers, 2015: An improved bulk air–sea flux algorithm, including spray-mediated transfer. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2424, in press.

    • Search Google Scholar
    • Export Citation
  • Baas, P., , G. J. Steeneveld, , B. J. H. Van De Wiel, , and A. A. M. Holtslag, 2006: Exploring self-correlation in flux–gradient relationships for stably stratified conditions. J. Atmos. Sci., 63, 30453054, doi:10.1175/JAS3778.1.

    • Search Google Scholar
    • Export Citation
  • Charnock, H., 1955: Wind stress over a water surface. Quart. J. Roy. Meteor. Soc., 81, 639640, doi:10.1002/qj.49708135027.

  • Crawford, T. L., , and R. J. Dobosy, 1992: A sensitive fast-response probe to measure turbulence and heat flux from any air plane. Bound.-Layer Meteor., 59, 257278, doi:10.1007/BF00119816.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1968: Dependence of air–sea transfer coefficients on bulk stability. J. Geophys. Res., 73, 25492557, doi:10.1029/JB073i008p02549.

    • Search Google Scholar
    • Export Citation
  • DeCosmo, J., 1991: Air–sea exchange of momentum, heat and water vapor over whitecap sea states. Ph.D. dissertation, University of Washington, 212 pp.

  • Fairall, C. W., , E. F. Bradley, , D. P. Rogers, , J. B. Edson, , and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101, 37473764, doi:10.1029/95JC03205.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , E. F. Bradley, , J. E. Hare, , A. A. Grachev, , and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garman, K. E., and et al. , 2006: An airborne and wind tunnel evaluation of a wind turbulence measurement system for aircraft-based flux measurements. J. Atmos. Oceanic Technol., 23, 16961708, doi:10.1175/JTECH1940.1.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Grachev, A. A., , and C. W. Fairall, 1997: Dependence of the Monin–Obukhov stability parameter on the bulk Richardson number over the ocean. J. Appl. Meteor., 36, 406414, doi:10.1175/1520-0450(1997)036<0406:DOTMOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hicks, B. B., 1978: Some limitations of dimensional analysis and power laws. Bound.-Layer Meteor., 14, 567569, doi:10.1007/BF00121895.

    • Search Google Scholar
    • Export Citation
  • Howell, J., , and L. Mahrt, 1997: Multiresolution flux decomposition. Bound.-Layer Meteor., 83, 117137, doi:10.1023/A:1000210427798.

  • Kenney, B. C., 1982: Beware of spurious self-correlation! Water Resour. Res., 18, 10411048, doi:10.1029/WR018i004p01041.

  • Khelif, D., , S. P. Burns, , and C. A. Friehe, 1999: Improved wind measurements on research aircraft. J. Atmos. Oceanic Technol., 16, 860875, doi:10.1175/1520-0426(1999)016<0860:IWMORA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klipp, C. L., , and L. Mahrt, 2004: Flux-gradient relationship, self-correlation and intermittency in the stable boundary layer. Quart. J. Roy. Meteor. Soc., 130, 20872103, doi:10.1256/qj.03.161.

    • Search Google Scholar
    • Export Citation
  • Kondo, J., 1975: Air-sea bulk transfer coefficients in diabatic conditions. Bound.-Layer Meteor., 9, 91112, doi:10.1007/BF00232256.

  • Lenschow, D. H., 1986: Aircraft measurements in the boundary layer. Probing the Atmospheric Boundary Layer, D. H. Lenschow, Ed., Amer. Meteor. Soc., 39–55.

  • Liu, W. T., , K. B. Katsaros, , and J. A. Businger, 1979: Bulk parameterization of the air–sea exchange of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 17221735, doi:10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., , D. Vickers, , J. Sun, , T. Crawford, , J. Crescenti, , and P. Fredrickson, 2001: Surface stress in offshore flow and quasi-frictional decoupling. J. Geophys. Res., 106, 20 62920 640, doi:10.1029/2000JD000159.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., , D. Vickers, , E. L Andreas, , and D. Khelif, 2012: Sensible heat flux in near-neutral conditions over the sea. J. Phys. Oceanogr., 42, 11341142, doi:10.1175/JPO-D-11-0186.1.

    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., , and J. A. Dutton, 1984: Atmospheric Turbulence: Models and Methods for Engineering Applications. John Wiley and Sons, 397 pp.

  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857861, doi:10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., , J. E. Hare, , C. W. Fairall, , and W. D. Otto, 2005: Air-sea interaction processes in warm and cold sectors of extratropical cyclonic storms observed during FASTEX. Quart. J. Roy. Meteor. Soc., 131, 877912, doi:10.1256/qj.03.181.

    • Search Google Scholar
    • Export Citation
  • Petersen, G. N., , and I. A. Renfrew, 2009: Aircraft-based observations of air-sea fluxes over Denmark Strait and the Irminger Sea during high wind speed conditions. Quart. J. Roy. Meteor. Soc., 135, 20302045, doi:10.1002/qj.355.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93, 15 46715 472, doi:10.1029/JC093iC12p15467.

    • Search Google Scholar
    • Export Citation
  • Sun, J., , D. Vandemark, , L. Mahrt, , D. Vickers, , T. Crawford, , and C. Vogel, 2001: Momentum transfer over the coastal zone. J. Geophys. Res., 106, 12 43712 488, doi:10.1029/2000JD900696.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., , and L. Mahrt, 2006: A solution for flux contamination by mesoscale motions with very weak turbulence. Bound.-Layer Meteor., 118, 431447, doi:10.1007/s10546-005-9003-y.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., , and L. Mahrt, 2010: Sea-surface roughness lengths in the midlatitude coastal zone. Quart. J. Roy. Meteor. Soc. 136, 1089–1093, doi:10.1002/qj.617.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., , L. Mahrt, , and E. L Andreas, 2013: Estimates of the 10-m neutral sea surface drag coefficient from aircraft eddy-covariance measurements. J. Phys. Oceanogr., 43, 301310, doi:10.1175/JPO-D-12-0101.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 213 213 27
PDF Downloads 191 191 36

Formulation of the Sea Surface Friction Velocity in Terms of the Mean Wind and Bulk Stability

View More View Less
  • 1 Oregon State University, Corvallis, Oregon
  • | 2 Northwest Research Associates, Redmond, Washington
  • | 3 Northwest Research Associates, Lebanon, New Hampshire
© Get Permissions
Restricted access

Abstract

Over 5000 aircraft eddy-covariance measurements from four different aircraft in nine different experiments are used to develop a simple model for the friction velocity over the sea. Unlike the widely used Coupled Ocean–Atmosphere Response Experiment (COARE) bulk flux scheme, the simple model (i) does not use Monin–Obukhov similarity theory (MOST) and therefore does not require an estimate of the Obukhov length, (ii) does not require a correction to the wind speed for height or stability, (iii) does not require an estimate of the aerodynamic roughness length, and (iv) does not require iteration. In comparing the model estimates developed in this work and those of the COARE algorithm, comparable fitting metrics for the two modeling schemes are found. That is, using Monin–Obukhov similarity theory and the Charnock relationship did not significantly improve the predictions. It is not clear how general the simple model proposed here is, but the same model with the same coefficients based on the combined dataset does a reasonable job of describing the datasets both individually and collectively. In addition, the simple model was generally able to predict the observed friction velocities for three independent datasets that were not used in tuning the model coefficients. Motivation for the simple model comes from the fact that physical interpretation of MOST can be ambiguous because of circular dependencies and self-correlation. Additional motivation comes from the large uncertainty associated with estimating the Obukhov length and, especially, the aerodynamic roughness length.

Corresponding author address: Dean Vickers, College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, CEOAS Admin Bldg. 104, Corvallis, OR 97331. E-mail: vickers@coas.oregonstate.edu

Abstract

Over 5000 aircraft eddy-covariance measurements from four different aircraft in nine different experiments are used to develop a simple model for the friction velocity over the sea. Unlike the widely used Coupled Ocean–Atmosphere Response Experiment (COARE) bulk flux scheme, the simple model (i) does not use Monin–Obukhov similarity theory (MOST) and therefore does not require an estimate of the Obukhov length, (ii) does not require a correction to the wind speed for height or stability, (iii) does not require an estimate of the aerodynamic roughness length, and (iv) does not require iteration. In comparing the model estimates developed in this work and those of the COARE algorithm, comparable fitting metrics for the two modeling schemes are found. That is, using Monin–Obukhov similarity theory and the Charnock relationship did not significantly improve the predictions. It is not clear how general the simple model proposed here is, but the same model with the same coefficients based on the combined dataset does a reasonable job of describing the datasets both individually and collectively. In addition, the simple model was generally able to predict the observed friction velocities for three independent datasets that were not used in tuning the model coefficients. Motivation for the simple model comes from the fact that physical interpretation of MOST can be ambiguous because of circular dependencies and self-correlation. Additional motivation comes from the large uncertainty associated with estimating the Obukhov length and, especially, the aerodynamic roughness length.

Corresponding author address: Dean Vickers, College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, CEOAS Admin Bldg. 104, Corvallis, OR 97331. E-mail: vickers@coas.oregonstate.edu
Save