• American Meteorological Society, cited 2014: “Mountain–plains wind systems.” Glossary of Meteorology. [Available online at http://glossary.ametsoc.org/wiki/Mountain-plains_wind_systems.]

  • Arritt, R. W., , T. D. Rink, , M. Segal, , D. P. Todey, , C. A. Clark, , M. J. Mitchell, , and K. M. Labas, 1997: The Great Plains low-level jet during the warm season of 1993. Mon. Wea. Rev., 125, 21762192, doi:10.1175/1520-0493(1997)125<2176:TGPLLJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., 1990: The role of mountain flows in making clouds. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, 229–283.

  • Berri, G., , and J. Inzunza, 1993: The effect of the low-level jet on the poleward water vapour transport in the central region of South America. Atmos. Environ., 27A, 335341, doi:10.1016/0960-1686(93)90107-A.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290.

    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., , and J. Paegle, 1970: Diurnal variations in boundary layer winds over the south-central United States in summer. Mon. Wea. Rev., 98, 735744, doi:10.1175/1520-0493(1970)098<0735:DVIBLW>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Borque, P., , P. Salio, , M. Nicolini, , and Y. García Skabar, 2010: Environment associated with deep moist convection under SALLJ conditions: A case study. Wea. Forecasting, 25, 970984, doi:10.1175/2010WAF2222352.1.

    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., , C. Jones, , and B. Liebmann, 2004: The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Climate, 17, 88108, doi:10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cerne, S. B., , C. S. Vera, , and B. Liebmann, 2007: The nature of a heat wave in eastern Argentina occurring during SALLJEX. Mon. Wea. Rev., 135, 11651174, doi:10.1175/MWR3306.1.

    • Search Google Scholar
    • Export Citation
  • Chaves, R. R., , and P. Satyamurty, 2006: Study of the regional conditions associated with a strong SACZ event during January 2003 (in Portuguese). Rev. Bras. Meteor., 19, 8998.

    • Search Google Scholar
    • Export Citation
  • Conforte, J. C., 1997: A study of mesoscale convective complexes over South America (in Portuguese). Ph.D. thesis, National Institute for Space Research, Brazil, 112 pp.

  • Cotton, W. R., and et al. , 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82, 529, doi:10.1007/s00703-001-0584-9.

    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., , M. Nicolini, , and C. A. Saulo, 1998: Observational evidences of a low level jet east of the Andes during January-March 1998. Meteorologica, 23, 6372.

    • Search Google Scholar
    • Export Citation
  • Ferreira, L., , C. A. Saulo, , and M. Seluchi, 2010: Features of the northwestern Argentinean low during the 1997-2003 period: Selection criteria and statistical analysis (in Spanish). Meteorologica, 35, 1728.

    • Search Google Scholar
    • Export Citation
  • Freitas, S. R., and et al. , 2009: The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS). Part 1: Model description and evaluation. Atmos. Chem. Phys., 9, 28432861, doi:10.5194/acp-9-2843-2009.

    • Search Google Scholar
    • Export Citation
  • García Skabar, Y., , and M. Nicolini, 2009: Enriched analyses with assimilation of SALLJEX data. J. Appl. Meteor. Climatol., 48, 24252440, doi:10.1175/2009JAMC2091.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, RG1001, doi:10.1029/2011RG000365.

  • Huffman, G. J., and et al. , 2007: The TRMM multi-satellite precipitation analysis: Quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., , W. Barnes, , T. Kozu, , J. Shiue, , and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., , G. N. Kiladis, , C. S. Vera, , A. C. Saulo, , and L. M. V. Carvalho, 2004: Subseasonal variations of rainfall in South America in the vicinity of the low-level jet east of the Andes and comparison to those in the South Atlantic convergence zone. J. Climate, 17, 38293842, doi:10.1175/1520-0442(2004)017<3829:SVORIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , E. J. Zipser, , and S. W. Nesbitt, 2007: Global distribution of tropical deep convection: Different perspectives from TRMM infrared and radar data. J. Climate, 20, 489503, doi:10.1175/JCLI4023.1.

    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., , W. R. Soares, , A. C. Saulo, , and M. Nicolini, 2004: Climatology of the low-level jet east of the Andes as derived from the NCEP–NCAR reanalyses: Characteristics and temporal variability. J. Climate, 17, 22612280, doi:10.1175/1520-0442(2004)017<2261:COTLJE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Monaghan, J. A., , D. L. Rife, , J. O. Pinto, , C. A. Davis, , and J. R. Hannan, 2010: Global precipitation extremes associated with diurnally varying low-level jets. J. Climate, 23, 50655084, doi:10.1175/2010JCLI3515.1.

    • Search Google Scholar
    • Export Citation
  • Nicolini, M., , and A. C. Saulo, 2006: Modeled Chaco low-level jets and related precipitation patterns during the 1997–1998 warm season. Meteor. Atmos. Phys., 94, 129143, doi:10.1007/s00703-006-0186-7.

    • Search Google Scholar
    • Export Citation
  • Nicolini, M., , and Y. García Skabar, 2011: Diurnal cycle in convergence patterns in the boundary layer east of the Andes and convection. Atmos. Res., 100, 377390, doi:10.1016/j.atmosres.2010.09.019.

    • Search Google Scholar
    • Export Citation
  • Nicolini, M., , A. C. Saulo, , J. C. Torres, , and P. Salio, 2002: Strong South American low level jet events characterization during warm season and implications for enhanced precipitation. Meteorologica, 27, 5969.

    • Search Google Scholar
    • Export Citation
  • Nicolini, M., , P. Salio, , G. Ulke, , J. Marengo, , M. Douglas, , J. Paegle, , and E. Zipser, 2004: South American low-level jet diurnal cycle and three-dimensional structure. CLIVAR Exchanges, No. 9, International CLIVAR Project Office, Southampton, United Kingdom, 6–8. [Available at http://www.clivar.org/sites/default/files/documents/Exchanges29.pdf.]

  • Nicolini, M., , P. Salio, , and P. Borque, 2005: Characterization of the thermal and kinematic vertical structure of the lower troposphere in northern Argentina during SALLJEX (in Spanish). Proc. Ninth Congreso Argentino de Meteorología, Buenos Aires, Argentina, Centro Argentino de Meteorólogos, CD-ROM.

  • Nicolini, M., , P. Salio, , and P. Borque, 2006: Thermodynamic and kinematic characterization of the low-level troposphere during SALLJEX under different large-scale environments. Proc. Eighth Intl. Conf. on Southern Hemisphere Meteorology and Oceanography,Foz do Iguaçu, Brazil, Instituto Nacional de Pesquisas Espaciais, 1141–1148. [Available online at http://mtc-m15.sid.inpe.br/col/cptec.inpe.br/adm_conf/2005/10.31.19.39/doc/1141-1148.pdf.]

  • Nieto Ferreira, R., , T. M. Rickenbach, , D. L. Herdies, , and L. M. V. Carvalho, 2003: Variability of South American convective cloud systems and tropospheric circulation during January–March 1998 and 1999. Mon. Wea. Rev., 131, 961973, doi:10.1175/1520-0493(2003)131<0961:VOSACC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nogués-Paegle, J., , and K. C. Mo, 1997: Alternating wet and dry conditions over South America during summer. Mon. Wea. Rev., 125, 279291, doi:10.1175/1520-0493(1997)125<0279:AWADCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Paegle, J., 1998: A comparative review of South American low level jets. Meteorologica, 23, 7381.

  • Pielke, R. A., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys., 39, 151177, doi:10.1029/1999RG000072.

    • Search Google Scholar
    • Export Citation
  • Rife, D. L., , J. O. Pinto, , A. J. Monaghan, , C. A. Davis, , and J. R. Hannan, 2010: Global distribution and characteristics of diurnally varying low-level jets. J. Climate, 23, 50415064, doi:10.1175/2010JCLI3514.1

    • Search Google Scholar
    • Export Citation
  • Romatschke, U., , and R. A. Houze Jr., 2010: Extreme summer convection in South America. J. Climate, 23, 37613791, doi:10.1175/2010JCLI3465.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Salio, P., , and M. Nicolini, 2006: Seasonal characterization of the diurnal cycle of convection frequency over southeastern South America under different low-jet conditions. Proc. Eighth Int. Conf. on Southern Hemisphere Meteorology and Oceanography, Foz do Iguaçu, Brazil, INPE, 24–28.

  • Salio, P., , M. Nicolini, , and A. C. Saulo, 2002: Chaco low-level jet events characterization during the austral summer season. J. Geophys. Res., 107, 4816, doi:10.1029/2001JD001315.

    • Search Google Scholar
    • Export Citation
  • Salio, P., , M. Nicolini, , and E. J. Zipser, 2007: Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon. Wea. Rev., 135, 12901309, doi:10.1175/MWR3305.1.

    • Search Google Scholar
    • Export Citation
  • Saulo, A. C., , M. Nicolini, , and S. C. Chou, 2000: Model characterization of the South American low-level flow during the 1997–98 spring–summer season. Climate Dyn., 16, 867881, doi:10.1007/s003820000085.

    • Search Google Scholar
    • Export Citation
  • Saulo, A. C., , M. Seluchi, , and M. Nicolini, 2004: A case study of a Chaco low-level jet event. Mon. Wea. Rev., 132, 26692683, doi:10.1175/MWR2815.1.

    • Search Google Scholar
    • Export Citation
  • Saulo, A. C., , J. Ruiz, , and Y. García Skabar, 2007: Synergism between the low-level jet and organized convection at its exit region. Mon. Wea. Rev., 135, 13101326, doi:10.1175/MWR3317.1.

    • Search Google Scholar
    • Export Citation
  • Segal, M., , W. Schreiber, , G. Kallos, , R. A. Pielke, , J. R. Garratt, , J. Weaver, , A. Rodi, , and J. Wilson, 1989: The impact of crop areas in northeast Colorado on midsummer mesoscale thermal circulations. Mon. Wea. Rev., 117, 809825, doi:10.1175/1520-0493(1989)117<0809:TIOCAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seluchi, M. E., , and J. A. Marengo, 2000: Tropical–midlatitude exchange of air masses during summer and winter in South America: Climatic aspects and examples of intense events. Int. J. Climatol., 20, 11671190, doi:10.1002/1097-0088(200008)20:10<1167::AID-JOC526>3.0.CO;2-T.

    • Search Google Scholar
    • Export Citation
  • Seluchi, M. E., , A. C. Saulo, , M. Nicolini, , and P. Satyamurty, 2003: The northwestern Argentinean low: A study of two typical events. Mon. Wea. Rev., 131, 23612378, doi:10.1175/1520-0493(2003)131<2361:TNALAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Szoke, E. J., , M. L. Weisman, , J. M. Brown, , F. Caracena, , T. W. Schlatter, 1984: A subsynoptic analysis of the Denver tornadoes of 3 June 1981. Mon. Wea. Rev., 112, 790808, doi:10.1175/1520-0493(1984)112<0790:ASAOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Torres, J. C., 2003: Heavily precipitating mesoscale convective systems over central and northern Argentina (in Spanish). Ph.D. thesis, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, 213 pp.

  • Tripoli, G. J., , and W. R. Cotton, 1989a: Numerical study of an observed orogenic mesoscale convective system. Part I: Simulated genesis and comparison with observations. Mon. Wea. Rev., 117, 283304, doi:10.1175/1520-0493(1989)117<0273:NSOAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., , and W. R. Cotton, 1989b: Numerical study of an observed orogenic mesoscale convective system. Part II: Analysis of governing dynamics. Mon. Wea. Rev., 117, 305328, doi:10.1175/1520-0493(1989)117<0305:NSOAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Velasco, I. Y., , and J. M. Fritsch, 1987: Mesoscale convective complexes in the Americas. J. Geophys. Res., 92, 95919613, doi:10.1029/JD092iD08p09591.

    • Search Google Scholar
    • Export Citation
  • Vera, C., and et al. , 2006: The South American Low-Level Jet Experiment. Bull. Amer. Meteor. Soc., 87, 6377, doi:10.1175/BAMS-87-1-63.

    • Search Google Scholar
    • Export Citation
  • Vila, D. A., 2005: Rainy mesoscale convective systems over South America: Life cycle and the associated large scale environment (in Spanish). Ph.D. thesis, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, 132 pp.

  • Vila, D. A., , L. A. T. Machado, , H. Laurent, , and I. Velasco, 2008: Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC) using satellite infrared imagery: Methodology and validation. Wea. Forecasting, 23, 233245, doi:10.1175/2007WAF2006121.1.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, 355 pp.

  • Whiteman, C. D., , X. Bian, , and S. Zhong, 1997: Low-level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains. J. Appl. Meteor., 36, 13631376, doi:10.1175/1520-0450(1997)036<1363:LLJCFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., , and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114, 25162536, doi:10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., , and R. D. Roberts, 2006: Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon. Wea. Rev., 134, 2347, doi:10.1175/MWR3069.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., , G. B. Foote, , N. A. Crook, , J. C. Fankhauser, , C. G. Wade, , J. D. Tuttle, , C. Mueller, , and S. K. Krueger, 1992: The role of boundary-layer convergence zones and horizontal rolls in the initiation of thunderstorms: A case study. Mon. Wea. Rev., 120, 17851815, doi:10.1175/1520-0493(1992)120<1785:TROBLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wolyn, P. G., , and T. B. McKee, 1994: The mountain–plains circulation east of a 2-km-high north–south barrier. Mon. Wea. Rev., 122, 14901508, doi:10.1175/1520-0493(1994)122<1490:TMPCEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., , D. J. Cecil, , C. Liu, , S. W. Nesbitt, , and D. P. Yorti, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571071, doi:10.1175/BAMS-87-8-1057.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 38 38 4
PDF Downloads 27 27 5

Characterizing the Diurnal Cycle of Low-Level Circulation and Convergence Using CFSR Data in Southeastern South America

View More View Less
  • 1 Centro de Investigaciones del Mar y la Atmósfera, and Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, and Unidad Mixta Internacional: Instituto Franco–Argentino sobre Estudios de Clima y sus Impactos, Ciudad Universitaria, Buenos Aires, Argentina
  • | 2 Centro de Investigaciones del Mar y la Atmósfera, and Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, and Unidad Mixta Internacional: Instituto Franco–Argentino sobre Estudios de Clima y sus Impactos, and Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
  • | 3 Unidad Mixta Internacional: Instituto Franco–Argentino sobre Estudios de Clima y sus Impactos, Ciudad Universitaria, and Servicio Meteorológico Nacional and Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
© Get Permissions
Restricted access

Abstract

The focus of this study is the characterization of the diurnal cycle of low-level wind and divergence field (under two different synoptic situations observed during the South American Low-Level Jet Experiment) within the South American domain encompassed between 20° and 35°S east of the Andes, using Climate Forecast System Reanalysis (CFSR). The objective is to highlight the existence of a spatial variation of these quantities and differences in the strength of their diurnal cycle between the two synoptic situations. Inertial oscillations and thermally driven circulations as well as convection-related contributions to mesoscale convergence and their implications for deep convection initiation/maintenance are addressed in each selected subregion. Prevalence of synoptic-scale forcing over the diurnally forced circulations, or vice versa, is also analyzed. Both mesoscale wind diurnal cycle and related divergence fields are sensitive to varying synoptic conditions and display regional variability. Thermal circulations related to topographical features superpose on the diurnal inertial oscillation that, while present in the whole domain, dominates the central plain subregions. The most evident diurnal cycle in the divergence field is restricted to sloped areas just to the east of the Andes and the Sierras de Córdoba where the mesoscale component of the divergence field is responsible for modulating the total divergence. CFSR provides a broad perspective of low-level circulation over southeastern South America (SESA) during the specific 15-day period. Results from this study might stimulate future research on a relationship between low-level circulation and the initiation of convection in SESA using CFSR to perform high-resolution simulations.

Corresponding author address: Henrique Fuchs Bueno Repinaldo, Centro de Investigaciones del Mar y la Atmósfera, CONICET, Universidad de Buenos Aires, Pab. 2, 2°Piso, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina. E-mail: hrepinaldo@cima.fcen.uba.ar

Abstract

The focus of this study is the characterization of the diurnal cycle of low-level wind and divergence field (under two different synoptic situations observed during the South American Low-Level Jet Experiment) within the South American domain encompassed between 20° and 35°S east of the Andes, using Climate Forecast System Reanalysis (CFSR). The objective is to highlight the existence of a spatial variation of these quantities and differences in the strength of their diurnal cycle between the two synoptic situations. Inertial oscillations and thermally driven circulations as well as convection-related contributions to mesoscale convergence and their implications for deep convection initiation/maintenance are addressed in each selected subregion. Prevalence of synoptic-scale forcing over the diurnally forced circulations, or vice versa, is also analyzed. Both mesoscale wind diurnal cycle and related divergence fields are sensitive to varying synoptic conditions and display regional variability. Thermal circulations related to topographical features superpose on the diurnal inertial oscillation that, while present in the whole domain, dominates the central plain subregions. The most evident diurnal cycle in the divergence field is restricted to sloped areas just to the east of the Andes and the Sierras de Córdoba where the mesoscale component of the divergence field is responsible for modulating the total divergence. CFSR provides a broad perspective of low-level circulation over southeastern South America (SESA) during the specific 15-day period. Results from this study might stimulate future research on a relationship between low-level circulation and the initiation of convection in SESA using CFSR to perform high-resolution simulations.

Corresponding author address: Henrique Fuchs Bueno Repinaldo, Centro de Investigaciones del Mar y la Atmósfera, CONICET, Universidad de Buenos Aires, Pab. 2, 2°Piso, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina. E-mail: hrepinaldo@cima.fcen.uba.ar
Save