• Aguilar, E., , I. Auer, , M. Brunet, , T. C. Peterson, , and J. Wieringa, 2003: Guidelines on climate metadata and homogenization. WMO/TD No. 1186, 50 pp. [Available online at http://www.wmo.int/datastat/documents/WCDMP-53_1.pdf.]

  • Arnfield, A. J., 2003: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23, 126, doi:10.1002/joc.859.

    • Search Google Scholar
    • Export Citation
  • Blandford, T. R., , K. S. Humes, , B. J. Harshburger, , B. C. Moore, , V. P. Walden, , and H. Ye, 2008: Seasonal and synoptic variations in near-surface air temperature lapse rates in a mountainous basin. J. Appl. Meteor. Climatol., 47, 249261, doi:10.1175/2007JAMC1565.1.

    • Search Google Scholar
    • Export Citation
  • Blankenstein, S., , and W. Kuttler, 2004: Impact of street geometry on downward longwave radiation and air temperature in an urban environment. Meteor. Z., 13, 373379, doi:10.1127/0941-2948/2004/0013-0373.

    • Search Google Scholar
    • Export Citation
  • Bowler, D. E., , L. Buyung-Ali, , T. M. Knight, , and A. S. Pullin, 2010: Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape Urban Plann., 97, 147155, doi:10.1016/j.landurbplan.2010.05.006.

    • Search Google Scholar
    • Export Citation
  • Brown, P. J., , and A. T. DeGaetano, 2010: Using a discriminant analysis to classify urban and rural climate stations based on diurnal range of temperature and dewpoint depression. J. Appl. Meteor. Climatol., 49, 23662379, doi:10.1175/2010JAMC2458.1.

    • Search Google Scholar
    • Export Citation
  • Chow, W. T. L., , and B. M. Svoma, 2011: Analyses of nocturnal temperature cooling-rate response to historical local-scale urban land-use/land cover change. J. Appl. Meteor. Climatol., 50, 18721883, doi:10.1175/JAMC-D-10-05014.1.

    • Search Google Scholar
    • Export Citation
  • Chung, U., , H. H. Seo, , K. H. Hwang, , B. S. Hwang, , J. Choi, , J. T. Lee, , and J. I. Yun, 2006: Minimum temperature mapping over complex terrain by estimating cold air accumulation potential. Agric. For. Meteor., 137, 1524, doi:10.1016/j.agrformet.2005.12.011.

    • Search Google Scholar
    • Export Citation
  • Das, L., , J. D. Annan, , J. C. Hargreaves, , and S. Emori, 2011: Centennial scale warming over Japan: Are the rural stations really rural? Atmos. Sci. Lett., 12, 362367, doi:10.1002/asl.350.

    • Search Google Scholar
    • Export Citation
  • Elvidge, C. D., , K. E. Baugh, , E. A. Kihn, , H. W. Kroehl, , and E. R. Davis, 1997: Mapping city lights with nighttime data from the DMSP operational linescan system. Photogramm. Eng. Remote Sens., 63, 727734.

    • Search Google Scholar
    • Export Citation
  • Fall, S., , A. Watts, , J. Nielsen-Gammon, , E. Jones, , D. Niyogi, , J. R. Christy, , and R. A. Pielke Sr., 2011: Analysis of the impacts of station exposure on the U.S. Historical Climatology Network temperatures and temperature trends. J. Geophys. Res., 116, D14120, doi:10.1029/2010JD015146.

    • Search Google Scholar
    • Export Citation
  • Foken, T., 2008: Micrometeorology. Springer, 308 pp.

  • Fujibe, F., 2009: Detection of urban warming in recent temperature trends in Japan. Int. J. Climatol., 29, 18111822, doi:10.1002/joc.1822.

    • Search Google Scholar
    • Export Citation
  • Gallo, K. P., , and T. W. Owen, 1999: Satellite-based adjustments for the urban heat island temperature bias. J. Appl. Meteor., 38, 806813, doi:10.1175/1520-0450(1999)038<0806:SBAFTU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gallo, K. P., , D. R. Easterling, , and T. C. Peterson, 1996: The influence of land use land cover on climatological values of the diurnal temperature range. J. Climate, 9, 29412944, doi:10.1175/1520-0442(1996)009<2941:TIOLUC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gallo, K. P., , T. W. Owen, , D. R. Easterling, , and P. F. Jamason, 1999: Temperature trends of the U.S. Historical Climatology Network based on satellite-designated land use/land cover. J. Climate, 12, 13441348, doi:10.1175/1520-0442(1999)012<1344:TTOTUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., , R. Ruedy, , J. Glascoe, , and M. Sato, 1999: GISS analysis of surface temperature change. J. Geophys. Res., 104, 30 99731 022, doi:10.1029/1999JD900835.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., , R. Ruedy, , M. Sato, , M. Imhoff, , W. Lawrence, , D. Easterling, , T. Peterson, , and T. Karl, 2001: A closer look at United States and global surface temperature change. J. Geophys. Res., 106, 23 94723 963, doi:10.1029/2001JD000354.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., , R. Ruedy, , M. Sato, , and K. Lo, 2010: global surface temperature change. Rev. Geophys., 48, RG4004, doi:10.1029/2010RG000345.

  • Hart, M. A., , and D. J. Sailor, 2009: Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theor. Appl. Climatol., 95, 397406, doi:10.1007/s00704-008-0017-5.

    • Search Google Scholar
    • Export Citation
  • Hawkins, T. W., , A. J. Brazel, , W. L. Stefanov, , W. Bigler, , and E. M. Saffell, 2004: The role of rural variability in urban heat island determination for Phoenix, Arizona. J. Appl. Meteor., 43, 476486, doi:10.1175/1520-0450(2004)043<0476:TRORVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • He, Y., , G. Jia, , Y. Hu, , and Z. Zhou, 2013: Detecting urban warming signals in climate records. Adv. Atmos. Sci., 30, 11431153, doi:10.1007/s00376-012-2135-3.

    • Search Google Scholar
    • Export Citation
  • Hinkel, K. M., , F. E. Nelson, , A. F. Klene, , and J. H. Bell, 2003: The urban heat island in winter at Barrow, Alaska. Int. J. Climatol., 23, 18891905, doi:10.1002/joc.971.

    • Search Google Scholar
    • Export Citation
  • Holmer, B., , S. Thorsson, , and J. Lindén, 2013: Evening evapotranspirative cooling in relation to vegetation and urban geometry in the city of Ouagadougou, Burkina Faso. Int. J. Climatol., 33, 30893105, doi:10.1002/joc.3561.

    • Search Google Scholar
    • Export Citation
  • Hua, L. J., , Z. G. Ma, , and W. D. Guo, 2008: The impact of urbanization on air temperature across China. Theor. Appl. Climatol., 93, 179194, doi:10.1007/s00704-007-0339-8.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., , and T. M. L. Wigley, 2010: Estimation of global temperature trends: What’s important and what isn’t. Climatic Change, 100, 5969, doi:10.1007/s10584-010-9836-3.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., , D. H. Lister, , and Q. Li, 2008: Urbanization effects in large-scale temperature records, with an emphasis on China. J. Geophys. Res., 113, D16122, doi:10.1029/2008JD009916.

    • Search Google Scholar
    • Export Citation
  • Junk, J., , A. Helbig, , and J. Lüers, 2003: Urban climate and air quality in Trier Germany. Int. J. Biometeor.,47, 230–238, doi:10.1007/s00484-003-0162-6.

  • Kolokotsa, D., , A. Psomas, , and E. Karapidakis, 2009: Urban heat island in southern Europe: The case study of Hania, Crete. Sol. Energy, 83, 18711883, doi:10.1016/j.solener.2009.06.018.

    • Search Google Scholar
    • Export Citation
  • Li, R., , and M. Roth, 2007: Spatial variation of the canopy-level urban heat island in Singapore. Proc. Seventh Int. Conf. on Urban Climate, Yokohama, Japan, International Association for Urban Climate. [Available online at http://www.ide.titech.ac.jp/~icuc7/extended_abstracts/pdf/384784-1-090123163421-004.pdf.]

  • Lindén, J., 2011: Nocturnal cool island in the Sahelian city of Ouagadougou, Burkina Faso. Int. J. Climatol., 31, 605620, doi:10.1002/joc.2069.

    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., , and C. Bonfils, 2008: The effect of irrigation on regional temperatures: A spatial and temporal analysis of trends in California, 1934–2002. J. Climate, 21, 20632071, doi:10.1175/2007JCLI1755.1.

    • Search Google Scholar
    • Export Citation
  • Magee, N., , J. Curtis, , and G. Wendler, 1999: The urban heat island effect at Fairbanks, Alaska. Theor. Appl. Climatol., 64, 3947, doi:10.1007/s007040050109.

    • Search Google Scholar
    • Export Citation
  • Mahmood, R., , K. G. Hubbard, , and C. Carlson, 2004: Modification of growing-season surface temperature records in the northern Great Plains due to land-use transformation: Verification of modelling results and implication for global climate change. Int. J. Climatol., 24, 311327, doi:10.1002/joc.992.

    • Search Google Scholar
    • Export Citation
  • NOAA/NESDIS, 2002: Site Information Handbook. NOAA-CRN/OSD-2002-0002R0UD0, 13 pp. + 2 appendixes. [Available online at http://www1.ncdc.noaa.gov/pub/data/uscrn/documentation/program/X030FullDocumentD0.pdf.]

  • Oke, T. R., 1982: The energetic basis of the urban heat-island. Quart. J. Roy. Meteor. Soc., 108, 124, doi:10.1002/qj.49710845502.

  • Oke, T. R., 1987: Boundary Layer Climates. 2nd ed. Routledge, 435 pp.

  • Owen, T. W., , and K. P. Gallo, 2000: Updated population metadata for United States Historical Climatology Network stations. J. Climate, 13, 40284033, doi:10.1175/1520-0442(2001)013<4028:UPMFUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parker, D. E., 2006: A demonstration that large-scale warming is not urban. J. Climate, 19, 28822895, doi:10.1175/JCLI3730.1.

  • Parker, D. E., 2010: Urban heat island effects on estimates of observed climate change. Wiley Interdiscip. Rev.: Climate Change, 1, 123133, doi:10.1002/wcc.21.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., 2003: Assessment of urban versus rural in situ surface temperatures in the contiguous United States: No difference found. J. Climate, 16, 29412959, doi:10.1175/1520-0442(2003)016<2941:AOUVRI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., , and R. S. Vose, 1997: An overview of the Global Historical Climatology Network temperature database. Bull. Amer. Meteor. Soc., 78, 28372849, doi:10.1175/1520-0477(1997)078<2837:AOOTGH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., , and T. W. Owen, 2005: Urban heat island assessment: Metadata are important. J. Climate, 18, 26372646, doi:10.1175/JCLI3431.1.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., , K. P. Gallo, , J. Lawrimore, , T. W. Owen, , A. Huang, , and D. A. McKittrick, 1999: Global rural temperature trends. Geophys. Res. Lett., 26, 329332, doi:10.1029/1998GL900322.

    • Search Google Scholar
    • Export Citation
  • Ren, G., , Y. Zhou, , Z. Chu, , J. Zhou, , A. Zhang, , J. Guo, , and X. Liu, 2008: Urbanization effects on observed surface air temperature trends in north China. J. Climate, 21, 13331348, doi:10.1175/2007JCLI1348.1.

    • Search Google Scholar
    • Export Citation
  • Steeneveld, G. J., , S. Koopmans, , B. G. Heusinkveld, , L. W. A. van Hove, , and A. A. M. Holtslag, 2011: Quantifying urban heat island effects and human comfort for cities of variable size and urban morphology in the Netherlands. J. Geophys. Res., 116, D20129, doi:10.1029/2011JD015988.

    • Search Google Scholar
    • Export Citation
  • Stewart, I. D., , and T. R. Oke, 2012: Local climate zones for urban temperature studies. Bull. Amer. Meteor. Soc., 93, 18791900, doi:10.1175/BAMS-D-11-00019.1.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and et al. , 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp. [Available online at www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf.]

  • Torok, S. J., , C. J. G. Morris, , C. Skinner, , and N. Plummer, 2001: Urban heat island features of southeast Australian towns. Aust. Meteor. Mag., 50, 113.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and et al. , 2007: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 235–336. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter3.pdf.]

  • Venema, V. K. C., and et al. , 2012: Benchmarking homogenization algorithms for monthly data. Climate Past, 8, 89115, doi:10.5194/cp-8-89-2012.

    • Search Google Scholar
    • Export Citation
  • Wienert, U., , and W. Kuttler, 2005: The dependence of the urban heat island intensity on latitude—A statistical approach. Meteor. Z., 14, 677686, doi:10.1127/0941-2948/2005/0069.

    • Search Google Scholar
    • Export Citation
  • Yokobori, T., , and S. Ohta, 2009: Effect of land cover on air temperatures involved in the development of an intra-urban heat island. Climate Res., 39, 6173, doi:10.3354/cr00800.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 62 62 12
PDF Downloads 44 44 11

Using Land Cover, Population, and Night Light Data for Assessing Local Temperature Differences in Mainz, Germany

View More View Less
  • 1 Department of Geography, Johannes Gutenberg University, Mainz, Germany
  • | 2 Urban Climate Group, Department of Earth Sciences, University of Gothenburg, Göteborg, Sweden
© Get Permissions
Restricted access

Abstract

Urban areas are believed to affect temperature readings, thereby biasing the estimation of twentieth-century warming at regional to global scales. The precise effect of changes in the surroundings of meteorological stations, particularly gradual changes due to urban growth, is difficult to determine. In this paper, data from 10 temperature stations within 15 km of the city of Mainz (Germany) over a period of 842 days are examined to assess the connection between temperature and the properties of the station surroundings, considering (i) built/paved area surface coverage, (ii) population, and (iii) night light intensity. These properties were examined in circles with increasing radii from the stations to identify the most influential source areas. Daily maximum temperatures Tmax, as well as daily average temperatures, are shown to be significantly influenced by elevation and were adjusted before the analysis of anthropogenic surroundings, whereas daily minimum temperatures Tmin were not. Significant correlations (p < 0.1) between temperature and all examined properties of station surroundings up to 1000 m are found, but the effects are diminished at larger distance. Other factors, such as slope and topographic position (e.g., hollows), were important, especially to Tmin. Therefore, properties of station surroundings up to 1000 m from the stations are most suitable for the assessment of potential urban influence on Tmax and Tmin in the temperate zone of central Europe.

Corresponding author address: J. Lindén, Dept. of Geography, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 21, 55099 Mainz, Germany. E-mail: linden@uni-mainz.de

Abstract

Urban areas are believed to affect temperature readings, thereby biasing the estimation of twentieth-century warming at regional to global scales. The precise effect of changes in the surroundings of meteorological stations, particularly gradual changes due to urban growth, is difficult to determine. In this paper, data from 10 temperature stations within 15 km of the city of Mainz (Germany) over a period of 842 days are examined to assess the connection between temperature and the properties of the station surroundings, considering (i) built/paved area surface coverage, (ii) population, and (iii) night light intensity. These properties were examined in circles with increasing radii from the stations to identify the most influential source areas. Daily maximum temperatures Tmax, as well as daily average temperatures, are shown to be significantly influenced by elevation and were adjusted before the analysis of anthropogenic surroundings, whereas daily minimum temperatures Tmin were not. Significant correlations (p < 0.1) between temperature and all examined properties of station surroundings up to 1000 m are found, but the effects are diminished at larger distance. Other factors, such as slope and topographic position (e.g., hollows), were important, especially to Tmin. Therefore, properties of station surroundings up to 1000 m from the stations are most suitable for the assessment of potential urban influence on Tmax and Tmin in the temperate zone of central Europe.

Corresponding author address: J. Lindén, Dept. of Geography, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 21, 55099 Mainz, Germany. E-mail: linden@uni-mainz.de
Save