• Armijo, L., 1969: A theory for the determination of wind and precipitation velocities with Doppler radars. J. Atmos. Sci., 26, 570573, doi:10.1175/1520-0469(1969)026<0570:ATFTDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1973: Mesoscale objective analysis using weighted time-series observations. NOAA Tech. Memo. ERL NSSL-62, National Severe Storms Laboratory, Norman, OK, 60 pp. [NTIS COM-73-10781.]

  • Bell, M. M., , and M. T. Montgomery, 2010: Sheared deep vortical convection in pre-depression Hagupit during TCS08. Geophys. Res. Lett., 37, L06802, doi:10.1029/2009GL042313.

    • Search Google Scholar
    • Export Citation
  • Bousquet, O., , and M. Chong, 1998: A multiple-Doppler synthesis and continuity adjustment technique (MUSCAT) to recover wind components from Doppler radar measurements. J. Atmos. Oceanic Technol., 15, 343359, doi:10.1175/1520-0426(1998)015<0343:AMDSAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and et al. , 2013: NASA’s Genesis and Rapid Intensification Processes (GRIP) field experiment. Bull. Amer. Meteor. Soc., 94, 345363, doi:10.1175/BAMS-D-11-00232.1.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., , and R. Wexler, 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor., 7, 105113, doi:10.1175/1520-0450(1968)007<0105:TDOKPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chong, M., , and J. Testud, 1996: Three-dimensional air circulation in a squall line from airborne dual-beam Doppler radar data: A test of coplane methodology software. J. Atmos. Oceanic Technol., 13, 3653, doi:10.1175/1520-0426(1996)013<0036:TDACIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dazhang, T., , S. G. Geotis, , R. E. Passarelli Jr., , and A. L. Hansen, , and C. L. Frush, 1984: Evaluation of an alternating-PRF method for extending the range of unambiguous Doppler velocity. Preprints, 22nd Conf. on Radar Meteorology, Zurich, Switzerland, Amer. Meteor. Soc., 523–527.

  • Doviak, R. J., , P. S. Ray, , R. G. Strauch, , and L. J. Miller, 1976: Error estimation in wind fields derived from dual-Doppler radar measurement. J. Appl. Meteor., 15, 868878, doi:10.1175/1520-0450(1976)015<0868:EEIWFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., 1997: Evaluation of a fully three-dimensional variational Doppler analysis technique. Preprints, 28th Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 422–423.

  • Gamache, J. F., , F. D. Marks Jr., , and F. Roux, 1995: Comparison of three airborne Doppler sampling techniques with airborne in situ wind observations in Hurricane Gustav (1990). J. Atmos. Oceanic Technol., 12, 171181, doi:10.1175/1520-0426(1995)012<0171:COTADS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gao, J., , M. Xue, , A. Shapiro, , and K. K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev., 127, 21282142, doi:10.1175/1520-0493(1999)127<2128:AVMFTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guimond, S. R., , L. Tian, , G. M. Heymsfield, , and S. J. Frasier, 2014: Wind retrieval algorithms for the IWRAP and HIWRAP airborne Doppler radars with application to hurricanes. J. Atmos. Oceanic Technol., 31, 11891215, doi:10.1175/JTECH-D-13-00140.1.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., , M. T. Montgomery, , and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232, doi:10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., , L. Tian, , A. J. Heymsfield, , L. Li, , and S. Guimond, 2010: Characteristics of deep tropical and subtropical convection from nadir-viewing high-altitude airborne Doppler radar. J. Atmos. Sci., 67, 285308, doi:10.1175/2009JAS3132.1.

    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., and et al. , 1996: The ELDORA/ASTRAIA airborne Doppler weather radar: High-resolution observations from TOGA COARE. Bull. Amer. Meteor. Soc., 77, 213232, doi:10.1175/1520-0477(1996)077<0213:TEADWR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 21792196, doi:10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., , W.-C. Lee, , and M. M. Bell, 2009: Convective contribution to the genesis of Hurricane Ophelia (2005). Mon. Wea. Rev., 137, 27782800, doi:10.1175/2009MWR2727.1.

    • Search Google Scholar
    • Export Citation
  • Jordan, C. L., 1958: Mean soundings for the West Indies area. J. Atmos. Sci., 15, 9197, doi:10.1175/1520-0469(1958)015<0091:MSFTWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General observations by research aircraft. J. Atmos. Sci., 41, 12681285, doi:10.1175/1520-0469(1984)041<1268:MACSCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., , and J. D. DuGranrut, 1991: A dual-beam technique for deriving wind fields from airborne Doppler radar. Preprints, 25th Int. Conf. on Radar Meteorology, Paris, France, Amer. Meteor. Soc., 458–461.

  • Jorgensen, D. P., , P. H. Hildebrand, , and C. L. Frush, 1983: Feasibility test of an airborne pulse-Doppler meteorological radar. J. Climate Appl. Meteor., 22, 744757, doi:10.1175/1520-0450(1983)022<0744:FTOAAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klimowski, B. A., , and J. D. Marwitz, 1992: The synthetic dual-Doppler analysis technique. J. Atmos. Oceanic Technol., 9, 728745, doi:10.1175/1520-0426(1992)009<0728:TSDDAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., , M. desJardins, , and P. J. Kocin, 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor., 22, 14871503, doi:10.1175/1520-0450(1983)022<1487:AIBOMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, W.-C., , P. Dodge, , F. D. Marks Jr., , and P. H. Hildebrand, 1994: Mapping of airborne Doppler radar data. J. Atmos. Oceanic Technol., 11, 572578, doi:10.1175/1520-0426(1994)011<0572:MOADRD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lhermitte, R. M., 1971: Probing of atmospheric motion by airborne pulse-Doppler radar techniques. J. Appl. Meteor., 10, 234246, doi:10.1175/1520-0450(1971)010<0234:POAMBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lhermitte, R. M., , and D. Atlas, 1961: Precipitation motion by pulse Doppler radar. Preprints, Ninth Conf. on Weather Radar, Norman, OK, Amer. Meteor. Soc., 218–223.

  • Li, L., , G. Heymsfield, , J. Carswell, , D. Schaubert, , M. McLinden, , M. Vega, , and M. Perrine, 2011: Development of the NASA High-Altitude Imaging Wind and Rain Airborne Profiler. Preprints, IEEE Aerospace Conf., Big Sky, MT, Institute of Electrical and Electronics Engineers, Paper 6.0202, 7 pp, doi:10.1109/AERO.2011.5747415.

  • Marks, F. D., Jr., , and R. A. Houze Jr., 1984: Airborne Doppler radar observations in Hurricane Debby. Bull. Amer. Meteor. Soc., 65, 569582, doi:10.1175/1520-0477(1984)065<0569:ADROIH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miller, L. J., , and R. G. Strauch, 1974: A dual Doppler radar method for the determination of wind velocities within precipitating weather systems. Remote Sens. Environ., 3, 219235, doi:10.1016/0034-4257(74)90044-3.

    • Search Google Scholar
    • Export Citation
  • Mohr, C. G., , L. J. Miller, , R. L. Vaughan, , and H. W. Frank, 1986: The merger of mesoscale datasets into a common Cartesian format for efficient and systematic analyses. J. Atmos. Oceanic Technol., 3, 143161, doi:10.1175/1520-0426(1986)003<0143:TMOMDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , M. M. Bell, , S. D. Aberson, , and M. L. Black, 2006: Hurricane Isabel (2003): New insights into the physics of intense storms. Part I: Mean vortex structure and maximum intensity estimates. Bull. Amer. Meteor. Soc., 87, 13351347, doi:10.1175/BAMS-87-10-1335.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., , M. D. Eastin, , and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603631, doi:10.1175/2008MWR2487.1.

    • Search Google Scholar
    • Export Citation
  • Sanger, N. T., , M. T. Montgomery, , R. K. Smith, , and M. M. Bell, 2014: An observational study of tropical cyclone spinup in Supertyphoon Jangmi from 24 to 27 September. Mon. Wea. Rev., 142, 328, doi:10.1175/MWR-D-12-00306.1.

    • Search Google Scholar
    • Export Citation
  • Tian, L., , G. Heymsfield, , S. Guimond, , and L. Li, 2013: VAD and dual-Doppler analysis of wind fields from HIWRAP observations during GRIP. 36th Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor. Soc., 212. [Available online at http://ams.confex.com/ams/36Radar/webprogram/Paper229079.html.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 33 33 1
PDF Downloads 23 23 0

The Coplane Analysis Technique for Three-Dimensional Wind Retrieval Using the HIWRAP Airborne Doppler Radar

View More View Less
  • 1 NASA Goddard Space Flight Center, Greenbelt, Maryland, and Oak Ridge Associated Universities, Oak Ridge, Tennessee
  • | 2 NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 3 NASA Goddard Space Flight Center, Greenbelt, and Morgan State University/Goddard Earth Sciences Technology and Research Program, Baltimore, Maryland
  • | 4 NASA Goddard Space Flight Center, Greenbelt, and University of Maryland/Earth System Science Interdisciplinary Center, College Park, Maryland
© Get Permissions
Restricted access

Abstract

The coplane analysis technique for mapping the three-dimensional wind field of precipitating systems is applied to the NASA High-Altitude Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a dual-frequency Doppler radar system with two downward-pointing and conically scanning beams. The coplane technique interpolates radar measurements onto a natural coordinate frame, directly solves for two wind components, and integrates the mass continuity equation to retrieve the unobserved third wind component. This technique is tested using a model simulation of a hurricane and compared with a global optimization retrieval. The coplane method produced lower errors for the cross-track and vertical wind components, while the global optimization method produced lower errors for the along-track wind component. Cross-track and vertical wind errors were dependent upon the accuracy of the estimated boundary condition winds near the surface and at nadir, which were derived by making certain assumptions about the vertical velocity field. The coplane technique was then applied successfully to HIWRAP observations of Hurricane Ingrid (2013). Unlike the global optimization method, the coplane analysis allows for a transparent connection between the radar observations and specific analysis results. With this ability, small-scale features can be analyzed more adequately and erroneous radar measurements can be identified more easily.

Corresponding author address: Anthony C. Didlake Jr., NASA/GSFC, Mail Code 612, Greenbelt, MD 20771. E-mail: anthony.didlake@nasa.gov

Abstract

The coplane analysis technique for mapping the three-dimensional wind field of precipitating systems is applied to the NASA High-Altitude Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a dual-frequency Doppler radar system with two downward-pointing and conically scanning beams. The coplane technique interpolates radar measurements onto a natural coordinate frame, directly solves for two wind components, and integrates the mass continuity equation to retrieve the unobserved third wind component. This technique is tested using a model simulation of a hurricane and compared with a global optimization retrieval. The coplane method produced lower errors for the cross-track and vertical wind components, while the global optimization method produced lower errors for the along-track wind component. Cross-track and vertical wind errors were dependent upon the accuracy of the estimated boundary condition winds near the surface and at nadir, which were derived by making certain assumptions about the vertical velocity field. The coplane technique was then applied successfully to HIWRAP observations of Hurricane Ingrid (2013). Unlike the global optimization method, the coplane analysis allows for a transparent connection between the radar observations and specific analysis results. With this ability, small-scale features can be analyzed more adequately and erroneous radar measurements can be identified more easily.

Corresponding author address: Anthony C. Didlake Jr., NASA/GSFC, Mail Code 612, Greenbelt, MD 20771. E-mail: anthony.didlake@nasa.gov
Save