Impacts of Mesoscale Wind on Turbulent Flow and Ventilation in a Densely Built-up Urban Area

Seung-Bu Park School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Seung-Bu Park in
Current site
Google Scholar
PubMed
Close
,
Jong-Jin Baik School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Jong-Jin Baik in
Current site
Google Scholar
PubMed
Close
, and
Sang-Hyun Lee Department of Atmospheric Science, Kongju National University, Gongju, South Korea

Search for other papers by Sang-Hyun Lee in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Turbulent flow in a densely built-up area of Seoul, South Korea, for 0900–1500 LST 31 May 2008 is simulated using the parallelized large-eddy simulation model (PALM) coupled to a mesoscale model (Weather Research and Forecasting Model). Time-varying inflow that is composed of mesoscale wind and turbulent signals induces different mean flows and turbulence structures depending on time. Sweeps induced by upper flow are distinct for 0900–0910 LST, and strong ejections and weaker sweeps are dominant for 1450–1500 LST at height z = 200 m. To investigate pedestrian wind environment and ventilation, mean wind velocity and turbulent kinetic energy at 2.5 m above streets are analyzed. The reference mean wind speed at z = 600 m continuously increases after 1010 LST. The pedestrian mean streamwise velocity tends to decrease after 1100 LST, although the pedestrian mean wind speed tends to slowly increase. Whereas the temporal velocity variations related to mesoscale wind are distinct in a street canyon and an intersection, the variations induced by mesoscale wind disappear in a dense building area, indicating strong decoupling from mesoscale wind. The velocity ratio of the pedestrian mean wind speed to the reference mean wind speed, representing a measure of ventilation in urban areas, is high on broad streets and at intersections and is low in dense building areas. Vortices in street canyons and winding flows around tall buildings seem to induce high velocity ratio there. The velocity ratio is shown to be linearly proportional to the pedestrian mean streamwise velocity.

Corresponding author address: Jong-Jin Baik, School of Earth and Environmental Sciences, Seoul National University, Seoul 151-742, South Korea. E-mail: jjbaik@snu.ac.kr

Abstract

Turbulent flow in a densely built-up area of Seoul, South Korea, for 0900–1500 LST 31 May 2008 is simulated using the parallelized large-eddy simulation model (PALM) coupled to a mesoscale model (Weather Research and Forecasting Model). Time-varying inflow that is composed of mesoscale wind and turbulent signals induces different mean flows and turbulence structures depending on time. Sweeps induced by upper flow are distinct for 0900–0910 LST, and strong ejections and weaker sweeps are dominant for 1450–1500 LST at height z = 200 m. To investigate pedestrian wind environment and ventilation, mean wind velocity and turbulent kinetic energy at 2.5 m above streets are analyzed. The reference mean wind speed at z = 600 m continuously increases after 1010 LST. The pedestrian mean streamwise velocity tends to decrease after 1100 LST, although the pedestrian mean wind speed tends to slowly increase. Whereas the temporal velocity variations related to mesoscale wind are distinct in a street canyon and an intersection, the variations induced by mesoscale wind disappear in a dense building area, indicating strong decoupling from mesoscale wind. The velocity ratio of the pedestrian mean wind speed to the reference mean wind speed, representing a measure of ventilation in urban areas, is high on broad streets and at intersections and is low in dense building areas. Vortices in street canyons and winding flows around tall buildings seem to induce high velocity ratio there. The velocity ratio is shown to be linearly proportional to the pedestrian mean streamwise velocity.

Corresponding author address: Jong-Jin Baik, School of Earth and Environmental Sciences, Seoul National University, Seoul 151-742, South Korea. E-mail: jjbaik@snu.ac.kr
Save
  • Baik, J.-J., and J.-J. Kim, 1999: A numerical study of flow and pollutant dispersion characteristics in urban street canyons. J. Appl. Meteor., 38, 15761589, doi:10.1175/1520-0450(1999)038<1576:ANSOFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baik, J.-J., S.-B. Park, and J.-J. Kim, 2009: Urban flow and dispersion simulation using a CFD model coupled to a mesoscale model. J. Appl. Meteor. Climatol., 48, 16671681, doi:10.1175/2009JAMC2066.1.

    • Search Google Scholar
    • Export Citation
  • Balogun, A. A., and Coauthors, 2010: In-street wind direction variability in the vicinity of a busy intersection in central London. Bound.-Layer Meteor., 136, 489513, doi:10.1007/s10546-010-9515-y.

    • Search Google Scholar
    • Export Citation
  • Böttcher, F., St. Barth, and J. Peinke, 2007: Small and large scale fluctuations in atmospheric wind speeds. Stochastic Environ. Res. Risk Assess., 21, 299308, doi:10.1007/s00477-006-0065-2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cheng, H., and I. P. Castro, 2002: Near wall flow over urban-like roughness. Bound.-Layer Meteor., 104, 229259, doi:10.1023/A:1016060103448.

    • Search Google Scholar
    • Export Citation
  • Coceal, O., T. G. Thomas, I. P. Castro, and S. E. Belcher, 2006: Mean flow and turbulence statistics over groups of urban-like cubical obstacles. Bound.-Layer Meteor., 121, 491519, doi:10.1007/s10546-006-9076-2.

    • Search Google Scholar
    • Export Citation
  • Cox, C. F., B. Z. Cybyk, J. P. Boris, Y. T. Fung, and S. W. Chang, 2000: Coupled microscale-mesoscale modeling of contaminant transport in urban environments. Abstracts, Third Symp. on the Urban Environment, Davis, CA, Amer. Meteor. Soc., 8.2. [Available online at https://ams.confex.com/ams/AugDavis/techprogram/paper_15208.htm.]

  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, doi:10.1007/BF00119502.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ehrhard, J., I. Khatib, C. Winkler, R. Kunz, N. Moussiopoulos, and G. Ernst, 2000: The microscale model MIMO: Development and assessment. J. Wind Eng. Ind. Aerodyn., 85, 163176, doi:10.1016/S0167-6105(99)00137-3.

    • Search Google Scholar
    • Export Citation
  • Eliasson, I., B. Offerle, C. S. B. Grimmond, and S. Lindqvist, 2006: Wind fields and turbulence statistics in an urban street canyon. Atmos. Environ., 40, 116, doi:10.1016/j.atmosenv.2005.03.031.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Howell, J. F., and L. Mahrt, 1997: Multiresolution flux decomposition. Bound.-Layer Meteor., 83, 117137, doi:10.1023/A:1000210427798.

    • Search Google Scholar
    • Export Citation
  • Inagaki, A., and M. Kanda, 2010: Organized structure of active turbulence over an array of cubes within the logarithmic layer of atmospheric flow. Bound.-Layer Meteor., 135, 209228, doi:10.1007/s10546-010-9477-0.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanda, M., A. Inagaki, T. Miyamoto, M. Gryschka, and S. Raasch, 2013: A new aerodynamic parametrization for real urban surfaces. Bound.-Layer Meteor., 148, 357377, doi:10.1007/s10546-013-9818-x.

    • Search Google Scholar
    • Export Citation
  • Kataoka, H., and M. Mizuno, 2002: Numerical flow computation around aeroelastic 3D square cylinder using inflow turbulence. Wind Struct., 5, 379392, doi:10.12989/was.2002.5.2_3_4.379.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-J., and J.-J. Baik, 2004: A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG kε turbulence model. Atmos. Environ., 38, 30393048, doi:10.1016/j.atmosenv.2004.02.047.

    • Search Google Scholar
    • Export Citation
  • Letzel, M. O., M. Krane, and S. Raasch, 2008: High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale. Atmos. Environ., 42, 87708784, doi:10.1016/j.atmosenv.2008.08.001.

    • Search Google Scholar
    • Export Citation
  • Letzel, M. O., C. Helmke, E. Ng, X. An, A. Lai, and S. Raasch, 2012: LES case study on pedestrian level ventilation in two neighbourhoods in Hong Kong. Meteor. Z., 21, 575589, doi:10.1127/0941-2948/2012/0356.

    • Search Google Scholar
    • Export Citation
  • Li, X., C. Liu, D. Leung, and K. Lam, 2006: Recent progress in CFD modelling of wind field and pollutant transport in street canyons. Atmos. Environ., 40, 56405658, doi:10.1016/j.atmosenv.2006.04.055.

    • Search Google Scholar
    • Export Citation
  • Liu, Y. S., S. G. Miao, C. L. Zhang, G. X. Cui, and Z. S. Zhang, 2012: Study on micro-atmospheric environment by coupling large eddy simulation with mesoscale model. J. Wind Eng. Ind. Aerodyn., 107–108, 106117, doi:10.1016/j.jweia.2012.03.033.

    • Search Google Scholar
    • Export Citation
  • Lund, T. S., X. Wu, and K. D. Squires, 1998: Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys., 140, 233258, doi:10.1006/jcph.1998.5882.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Muzy, J.-F., R. Baïle, and P. Poggi, 2010: Intermittency of surface-layer wind velocity series in the mesoscale range. Phys. Rev., 81E, 056308, doi:10.1103/PhysRevE.81.056308.

    • Search Google Scholar
    • Export Citation
  • Nakayama, H., T. Takemi, and H. Nagai, 2011: LES analysis of the aerodynamic surface properties for turbulent flows over building arrays with various geometries. J. Appl. Meteor. Climatol., 50, 16921712, doi:10.1175/2011JAMC2567.1.

    • Search Google Scholar
    • Export Citation
  • Nakayama, H., T. Takemi, and H. Nagai, 2012: Large-eddy simulation of urban boundary-layer flows by generating turbulent inflows from mesoscale meteorological simulations. Atmos. Sci. Lett., 13, 180186, doi:10.1002/asl.377.

    • Search Google Scholar
    • Export Citation
  • Park, S.-B., J.-J. Baik, and B.-S. Han, 2015: Large-eddy simulation of turbulent flow in a densely built-up urban area. Environ. Fluid Mech., 15, 235250, doi:10.1007/s10652-013-9306-3.

    • Search Google Scholar
    • Export Citation
  • Piacsek, S. A., and G. P. Williams, 1970: Conservation properties of convection difference schemes. J. Comput. Phys., 6, 392405, doi:10.1016/0021-9991(70)90038-0.

    • Search Google Scholar
    • Export Citation
  • Princevac, M., J.-J. Baik, X. Li, H. Pan, and S.-B. Park, 2010: Lateral channeling within rectangular arrays of cubical obstacles. J. Wind Eng. Ind. Aerodyn., 98, 377385, doi:10.1016/j.jweia.2009.11.001.

    • Search Google Scholar
    • Export Citation
  • Raasch, S., and M. Schröter, 2001: PALM—A large-eddy simulation model performing on massively parallel computers. Meteor. Z., 10, 363372, doi:10.1127/0941-2948/2001/0010-0363.

    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., 1981: Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers. J. Fluid Mech., 108, 363382, doi:10.1017/S0022112081002164.

    • Search Google Scholar
    • Export Citation
  • Ries, H., and K. H. Schlünzen, 2009: Evaluation of a mesoscale model with different surface parameterizations and vertical resolutions for the bay of Valencia. Mon. Wea. Rev., 137, 26462661, doi:10.1175/2009MWR2836.1.

    • Search Google Scholar
    • Export Citation
  • Roth, M., 2000: Review of atmospheric turbulence over cities. Quart. J. Roy. Meteor. Soc., 126, 941990, doi:10.1002/qj.49712656409.

  • Ryu, Y.-H., J.-J. Baik, and S.-H. Lee, 2011: A new single-layer urban canopy model for use in mesoscale atmospheric models. J. Appl. Meteor. Climatol., 50, 17731794, doi:10.1175/2011JAMC2665.1.

    • Search Google Scholar
    • Export Citation
  • Santos, J. M., N. C. Reis Jr., E. V. Goulart, and I. Mavroidis, 2009: Numerical simulation of flow and dispersion around an isolated cubical building: The effect of the atmospheric stratification. Atmos. Environ., 43, 54845492, doi:10.1016/j.atmosenv.2009.07.020.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Vickers, D., and L. Mahrt, 2003: The cospectral gap and turbulent flux calculations. J. Atmos. Oceanic Technol., 20, 660672, doi:10.1175/1520-0426(2003)20<660:TCGATF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wyszogrodzki, A. A., S. Miao, and F. Chen, 2012: Evaluation of the coupling between mesoscale-WRF and LES-EULAG models for simulating fine-scale urban dispersion. Atmos. Res., 118, 324345, doi:10.1016/j.atmosres.2012.07.023.

    • Search Google Scholar
    • Export Citation
  • Xie, Z.-T., 2011: Modelling street-scale flow and dispersion in realistic winds—Towards coupling with mesoscale meteorological models. Bound.-Layer Meteor., 141, 5375, doi:10.1007/s10546-011-9629-x.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y. Q., S. P. Arya, and W. H. Snyder, 1996: A comparison of numerical and physical modeling of stable atmospheric flow and dispersion around a cubical building. Atmos. Environ., 30, 13271345, doi:10.1016/1352-2310(95)00326-6.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2087 1561 45
PDF Downloads 546 130 7