Validation of Upper-Tropospheric Humidity from SAPHIR on board Megha-Tropiques Using Tropical Soundings

Hélène Brogniez Laboratoire Atmosphères, Milieux, Observations Spatiales, Guyancourt, France

Search for other papers by Hélène Brogniez in
Current site
Google Scholar
PubMed
Close
,
Gaëlle Clain Laboratoire Atmosphères, Milieux, Observations Spatiales, Guyancourt, France

Search for other papers by Gaëlle Clain in
Current site
Google Scholar
PubMed
Close
, and
Rémy Roca Laboratoire d’Etudes en Géophysique et Océanographie Spatiales, Toulouse, France

Search for other papers by Rémy Roca in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper describes the upper-tropospheric humidity (UTH) product derived from brightness temperature measurements of the Sondeur Atmosphérique du Profil d’Humidité Intertropicale par Radiométrie (SAPHIR) radiometer on board the Megha-Tropiques satellite. Under nonscattering conditions, the observations from three channels of SAPHIR—located at ±0.2, ±1.1, and ±2.8 GHz, respectively, around the 183.31-GHz strong water vapor absorption band—are interpreted into three different UTHs following a well-established method and thus describing the humidity content of the upper to midtroposphere. The evaluation of the UTHs is performed using reference UTHs defined from relative humidity (RH) profiles from radiosoundings of two field campaigns: the Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year 2011/Dynamics of the Madden–Julian Oscillation/Atmospheric Radiation Measurement Program Madden–Julian Oscillation Investigation Experiment (CINDY/DYNAMO/AMIE) and a Megha-Tropiques dedicated campaign in Ouagadougou, Burkina Faso, during the summer of 2012. A budget of the various uncertainties associated with each component of the evaluation method (such as the radiometric sensitivity and the radiative transfer computations) was created to achieve a more robust comparison between the two UTH estimates. The comparison between the reference UTHs and the SAPHIR UTHs reveals small global biases of lower than 2% RH on average, with correlation coefficients between 0.86 and 0.89. Taking into account the individual uncertainties gives root-mean-square errors of regressions that range between 0.92% and 4.71%. These three UTHs provide a vertical distribution of the RH that is suitable for studying various temporal and spatial scales of the tropical variability. The signature of a mesoscale convective system on its environment is briefly presented to illustrate the capability of this new dataset.

Corresponding author address: Hélène Brogniez, LATMOS, 11 boulevard d’Alembert, 78280 Guyancourt, France. E-mail: helene.brogniez@latmos.ipsl.fr

Abstract

This paper describes the upper-tropospheric humidity (UTH) product derived from brightness temperature measurements of the Sondeur Atmosphérique du Profil d’Humidité Intertropicale par Radiométrie (SAPHIR) radiometer on board the Megha-Tropiques satellite. Under nonscattering conditions, the observations from three channels of SAPHIR—located at ±0.2, ±1.1, and ±2.8 GHz, respectively, around the 183.31-GHz strong water vapor absorption band—are interpreted into three different UTHs following a well-established method and thus describing the humidity content of the upper to midtroposphere. The evaluation of the UTHs is performed using reference UTHs defined from relative humidity (RH) profiles from radiosoundings of two field campaigns: the Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year 2011/Dynamics of the Madden–Julian Oscillation/Atmospheric Radiation Measurement Program Madden–Julian Oscillation Investigation Experiment (CINDY/DYNAMO/AMIE) and a Megha-Tropiques dedicated campaign in Ouagadougou, Burkina Faso, during the summer of 2012. A budget of the various uncertainties associated with each component of the evaluation method (such as the radiometric sensitivity and the radiative transfer computations) was created to achieve a more robust comparison between the two UTH estimates. The comparison between the reference UTHs and the SAPHIR UTHs reveals small global biases of lower than 2% RH on average, with correlation coefficients between 0.86 and 0.89. Taking into account the individual uncertainties gives root-mean-square errors of regressions that range between 0.92% and 4.71%. These three UTHs provide a vertical distribution of the RH that is suitable for studying various temporal and spatial scales of the tropical variability. The signature of a mesoscale convective system on its environment is briefly presented to illustrate the capability of this new dataset.

Corresponding author address: Hélène Brogniez, LATMOS, 11 boulevard d’Alembert, 78280 Guyancourt, France. E-mail: helene.brogniez@latmos.ipsl.fr
Save
  • Bates, J. J., D. L. Jackson, F.-M. Bréon, and Z. D. Bergen, 2001: Variability of tropical upper tropospheric humidity 1979–1998. J. Geophys. Res., 106, 32 27132 281, doi:10.1029/2001JD000347.

    • Search Google Scholar
    • Export Citation
  • Brogniez, H., and R. T. Pierrehumbert, 2006: Using microwave observations to assess large-scale control of the free tropospheric water vapor in the mid-latitudes. Geophys. Res. Lett., 33, L14801, doi:10.1029/2006GL026240.

    • Search Google Scholar
    • Export Citation
  • Brogniez, H., L. Picon, and R. Roca, 2004: Interannual and intraseasonal variabilities of the free tropospheric humidity using Meteosat water vapor channel channel over the tropics. Proc. EUMETSAT Meteorological Satellite Conf., Prague, Czech Republic, EUMETSAT. [Available online at http://brogniez.page.latmos.ipsl.fr/docs/proceeding_Eumetsat2004.pdf.]

  • Brogniez, H., R. Roca, and L. Picon, 2005: Evaluation of the distribution of subtropical free tropospheric humidity in AMIP-2 simulations using METEOSAT water vapor channel data. Geophys. Res. Lett., 32, L19708, doi:10.1029/2005GL024341.

    • Search Google Scholar
    • Export Citation
  • Brogniez, H., R. Roca, and L. Picon, 2009: A study of the free tropospheric humidity interannual variability using METEOSAT data and an advection–condensation transport model. J. Climate, 22, 67736787, doi:10.1175/2009JCLI2963.1.

    • Search Google Scholar
    • Export Citation
  • Brogniez, H., P.-E. Kirstetter, and L. Eymard, 2013: Expected improvements in the atmospheric humidity profile retrieval using the Megha-Tropiques microwave payload. Quart. J. Roy. Meteor. Soc., 139, 842851, doi:10.1002/qj.1869.

    • Search Google Scholar
    • Export Citation
  • Buehler, S. A., and V. O. John, 2005: A simple method to relate microwave radiances to upper tropospheric humidity. J. Geophys. Res., 110, D02110, doi:10.1029/2004JD005111.

    • Search Google Scholar
    • Export Citation
  • Buehler, S. A., M. Kuvatov, V. O. John, M. Milz, B. J. Soden, D. L. Jackson, and J. Notholt, 2008: An upper tropospheric humidity data set from operational satellite microwave data. J. Geophys. Res., 113, D14110, doi:10.1029/2007JD009314.

    • Search Google Scholar
    • Export Citation
  • Cabrera-Mercader, C. R., and D. H. Staelin, 1995: Passive microwave relative humidity retrievals using feedforward neural networks. IEEE Trans. Geosci. Remote Sens., 33, 13241328, doi:10.1109/36.477189.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., Y. Han, P. van Delst, and F. Weng, 2010: On water vapor Jacobian in fast radiative transfer model. J. Geophys. Res., 115, D12303, doi:10.1029/2009JD013379.

    • Search Google Scholar
    • Export Citation
  • Chevallier, F., 2002: Sampled databases of 60-level atmospheric profiles from the ECMWF analysis. EUMETSAT SAF Program Research Rep. NWPSAF-EC-TR-004, 27 pp.

  • Chevallier, F., A. Chédin, F. Chéruy, and J.-J. Morcrette, 2000: TIGR-like atmospheric-profile databases for accurate radiative-flux computation. Quart. J. Roy. Meteor. Soc., 126, 777785, doi:10.1002/qj.49712656319.

    • Search Google Scholar
    • Export Citation
  • Chung, E.-S., and B. J. Soden, 2009: A satellite-based assessment of upper-tropospheric water vapor measurements during AFWEX. J. Appl. Meteor. Climatol., 48, 22842294, doi:10.1175/2009JAMC2250.1.

    • Search Google Scholar
    • Export Citation
  • Chung, E.-S., B. J. Soden, B.-J. Sohn, and J. Schmetz, 2011: Model-simulated humidity bias in the upper troposphere and its relation to the large-scale circulation. J. Geophys. Res., 116, D10110, doi:10.1029/2011JD015609.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., and Coauthors, 2014: Quality-controlled upper-air sounding dataset for DYNAMO/CINDY/AMIE: Development and corrections. J. Atmos. Oceanic Technol., 31, 741764, doi:10.1175/JTECH-D-13-00165.1.

    • Search Google Scholar
    • Export Citation
  • Clain, G., H. Brogniez, V. H. Payne, V. O. John, and M. Luo, 2014: An assessment of SAPHIR calibration using high quality tropical soundings. J. Atmos. Oceanic Technol., 32, 6178, doi:10.1175/JTECH-D-14-00054.1.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., 2011: Representing the sensitivity of convective cloud systems to tropospheric humidity in general circulation models. Surv. Geophys., 33, 637656, doi:10.1007/s10712-011-9148-9.

    • Search Google Scholar
    • Export Citation
  • Desbois, M., R. Roca, L. Eymard, N. Viltard, M. Viollier, J. Srinivasan, and S. Narayanan, 2003: The Megha-Tropiques mission. Atmospheric and Oceanic Processes, Dynamics, and Climate Change, Z. Sun, F.-F, Jin, and T. Iwasaki, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4899), 172, doi:10.1117/12.466703.

  • Desbois, M., M. Capderou, L. Eymard, R. Roca, N. Viltard, M. Viollier, and N. Karouche, 2007: Megha Tropiques, un satellite hydrométéorologique franco-indien (Megha Tropiques, a French-Indian hydrometeorological satellite). Meteorologie, 57, 1927, doi:10.4267/2042/18185.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., and S. C. Sherwood, 2009: A matter of humidity. Science, 323, 10201021, doi:10.1126/science.1171264.

  • Dirksen, R. J., M. Sommer, F. J. Immler, D. F. Hurst, R. Kivi, and H. Vömel, 2014: Reference quality upper-air measurements: GRUAN data processing for the Vaisala RS92 radiosonde. Atmos. Meas. Technol., 7, 44634490, doi:10.5194/amt-7-4463-2014.

    • Search Google Scholar
    • Export Citation
  • English, S. J., and T. J. Hewison, 1999: A fast generic millimeter-wave emissivity model. Microwave Remote Sensing of the Atmosphere and Environment, T. Hayasaka et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 3503), 288–300, doi:10.1117/12.319490.

  • Eymard, L., and Coauthors, 2002: The SAPHIR humidity sounder. Notes des activités instrumentales de l’IPSL 24, 17 pp.

  • Garand, L., and Coauthors, 2001: Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels. J. Geophys. Res., 106, 24 01724 031, doi:10.1029/2000JD000184.

    • Search Google Scholar
    • Export Citation
  • GCOS, 2013: The GCOS Reference Upper-Air Network (GRUAN) guide. WMO Integrated Global Observing System Tech. Rep. 2013-03/Global Climate Observing System Rep. GCOS-171, 116 pp. [Available online at http://www.wmo.int/pages/prog/gcos/Publications/gcos-171.pdf.]

  • Gierens, K., K. Eleftheratos, and L. Shi, 2014: 30 years of HIRS data of upper tropospheric humidity. Atmos. Chem. Phys., 14, 75337541, doi:10.5194/acp-14-7533-2014.

    • Search Google Scholar
    • Export Citation
  • Gohil, B. S., R. M. Gairola, A. K. Mathur, A. K. Varma, C. Mahesh, R. K. Gangwar, and P. K. Pal, 2013: Algorithms for retrieving geophysical parameters from the MADRAS and SAPHIR sensors of the Megha-Tropiques satellite: Indian scenario. Quart. J. Roy. Meteor. Soc., 139, 954963, doi:10.1002/qj.2041.

    • Search Google Scholar
    • Export Citation
  • Goldberg, M. D., D. S. Crosby, and L. Zhou, 2001: The limb adjustment of AMSU-A observations: Methodology and validation. J. Appl. Meteor., 40, 7083, doi:10.1175/1520-0450(2001)040<0070:TLAOAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Greenwald, T. J., and S. A. Christopher, 2002: Effect of cold clouds on satellite measurements near 183 GHz. J. Geophys. Res., 107, 4170, doi:10.1029/2000JD000258.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25, 441475, doi:10.1146/annurev.energy.25.1.441.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and K. M. Shell, 2012: Using relative humidity as a state variable in climate analysis. J. Climate, 25, 25782582, doi:10.1175/JCLI-D-11-00721.1.

    • Search Google Scholar
    • Export Citation
  • Hong, G., G. Heygster, J. Miao, and K. Kunzi, 2005: Detection of tropical deep convective clouds from AMSU-B water vapor channels measurements. J. Geophys. Res., 110, D05205, doi:10.1029/2004JD004949.

    • Search Google Scholar
    • Export Citation
  • Hong, G., G. Heygster, J. Notholt, and S. A. Buehler, 2008: Interannual to diurnal variations in tropical and subtropical deep convective clouds and convective overshooting from seven years of AMSU-B measurements. J. Climate, 21, 41684189, doi:10.1175/2008JCLI1911.1.

    • Search Google Scholar
    • Export Citation
  • Hurley, J. V., and J. Galewsky, 2010: A last saturation diagnosis of subtropical water vapor response to global warming. Geophys. Res. Lett., 37, L06702, doi:10.1029/2009GL042316.

    • Search Google Scholar
    • Export Citation
  • Immler, F. J., J. Dykema, T. Gardiner, D. N. Whiteman, P. W. Thorne, and H. Vömel, 2010: Reference quality upper-air measurements: Guidance for developing GRUAN data products. Atmos. Meas. Technol., 3, 12171231, doi:10.5194/amt-3-1217-2010.

    • Search Google Scholar
    • Export Citation
  • Jackson, D. L., and J. J. Bates, 2001: Upper tropospheric humidity algorithm assessment. J. Geophys. Res., 106D, 32 25932 270, doi:10.1029/2001JD000348.

    • Search Google Scholar
    • Export Citation
  • Karouche, N., C. Goldstein, A. Rosak, C. Malassingne, and G. Raju, 2012: Megha-Tropiques satellite mission: In flight performances results. Proc. Int. Geoscience and Remote Sensing Symp., Munich Germany, IEEE, 46844687.

  • Kelly, B. C., 2007: Some aspects of measurement errors in linear regression of astronomical data. Astrophys. J., 665, 14891506, doi:10.1086/519947.

    • Search Google Scholar
    • Export Citation
  • Matricardi, M., F. Chevallier, G. Kelly, and J.-N. Thépaut, 2004: An improved general fast radiative transfer model for the assimilation of radiance observations. Quart. J. Roy. Meteor. Soc., 130, 153173, doi:10.1256/qj.02.181.

    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., A. Paukkunen, H. Vömel, and S. J. Oltmans, 2004: Development and validation of a time lag correction for Vaisala radiosonde humidity measurements. J. Atmos. Oceanic Technol., 21, 13051327, doi:10.1175/1520-0426(2004)021<1305:DAVOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., H. Vömel, D. N. Whiteman, and T. Leblanc, 2009: Accuracy assessment and correction of Vaisala RS92 radiosonde water vapor measurements. J. Geophys. Res., 114, D11305, doi:10.1029/2008JD011565.

    • Search Google Scholar
    • Export Citation
  • Nash, J., T. Oakley, H. Vömel, and L. Wei, 2011: WMO intercomparison of high quality radiosonde systems. World Meteorological Organization Instruments and Observing Methods Rep. 107, WMO/TD-No. 1580, 238 pp. [Available online at http://www.wmo.int/pages/prog/www/IMOP/publications/IOM-107_Yangjiang.pdf.]

  • Pierrehumbert, R. T., 1995: Thermostats, radiator fins, and the local runaway greenhouse. J. Atmos. Sci., 52, 17841806, doi:10.1175/1520-0469(1995)052<1784:TRFATL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., and R. Roca, 1998: Evidence for control of Atlantic subtropical humidity by large-scale advection. Geophys. Res. Lett., 25, 45374540, doi:10.1029/1998GL900203.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., F. Aires, and W. B. Rossow, 2006: Land surface microwave emissivities over the globe for a decade. Bull. Amer. Meteor. Soc., 87, 15731584, doi:10.1175/BAMS-87-11-1573.

    • Search Google Scholar
    • Export Citation
  • Roca, R., P. Chambon, I. Jobard, P.-E. Kirstetter, M. Gosset, and J.-C. Bergès, 2010: Comparing satellite and surface rainfall products over West Africa at meteorologically relevant scales during the AMMA campaign using error estimates. J. Appl. Meteor. Climatol., 49, 715731, doi:10.1175/2009JAMC2318.1.

    • Search Google Scholar
    • Export Citation
  • Roca, R., R. Guzman, J. Lemond, J. Meijers, L. Picon, and H. Brogniez, 2011: Tropical and extra-tropical influences on the distribution of free tropospheric humidity over the intertropical belt. Surv. Geophys., 33, 565583, doi:10.1007/s10712-011-9169-4.

    • Search Google Scholar
    • Export Citation
  • Ryoo, J.-M., D. W. Waugh, and A. Gettelman, 2008: Variability of subtropical upper tropospheric humidity. Atmos. Chem. Phys., 8, 26432655, doi:10.5194/acp-8-2643-2008.

    • Search Google Scholar
    • Export Citation
  • Saunders, R. W., T. J. Hewison, S. J. Stringer, and N. C. Atkinson, 1995: The radiometric characterization of AMSU-B. IEEE Trans. Microwave Theory, 43, 760771, doi:10.1109/22.375222.

    • Search Google Scholar
    • Export Citation
  • Saunders, R. W., M. Matricardi, and P. Brunel, 1999: An improved fast radiative transfer model for assimilation of satellite radiance observation. Quart. J. Roy. Meteor. Soc., 125, 14071425, doi:10.1002/qj.1999.49712555615.

    • Search Google Scholar
    • Export Citation
  • Schaerer, G., and T. T. Wilheit, 1979: A passive microwave technique for profiling of atmospheric water vapor. Radio Sci., 14, 371375, doi:10.1029/RS014i003p00371.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., and O. M. Turpeinen, 1988: Estimation of the upper tropospheric relative humidity field Meteosat water vapor image data. J. Appl. Meteor., 27, 889899, doi:10.1175/1520-0450(1988)027<0889:EOTUTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schröder, M., R. Roca, L. Picon, A. Kniffka, and H. Brogniez, 2014: Climatology of free tropospheric humidity: Extension to the SEVIRI era, evaluation and exemplary analysis. Atmos. Chem. Phys., 14, 11 12911 148, doi:10.5194/acp-14-11129-2014.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., and Coauthors, 2009: Reference upper-air observations for climate: Rationale, progress, and plans. Bull. Amer. Meteor. Soc., 90, 361369, doi:10.1175/2008BAMS2540.1.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., E. R. Kursinski, and W. G. Read, 2006: A distribution law for free-tropospheric relative humidity. J. Climate, 19, 62676277, doi:10.1175/JCLI3978.1.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., W. Ingram, Y. Tsushima, M. Satoh, M. Roberts, P. L. Vidale, and P. A. O’Gorman, 2010a: Relative humidity changes in a warmer climate. J. Geophys. Res., 115, D09104, doi:10.1029/2009JD012585.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., R. Roca, T. M. Weckwerth, and N. G. Andronova, 2010b: Tropospheric water vapor, convection and climate. Rev. Geophys., 48, RG2001, doi:10.1029/2009RG000301.

    • Search Google Scholar
    • Export Citation
  • Sivira, R. G., H. Brogniez, C. Mallet, and Y. Oussar, 2015: A layer-averaged relative humidity profile retrieval for microwave observations: Design and results for the Megha-Tropiques payload. Atmos. Meas. Techniques, 8, 10551071, doi:10.5194/amt-8-1055-2015.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and F. P. Bretherton, 1993: Upper tropospheric relative humidity from the GOES 6.7 μm channel: Method and climatology for July 1987. J. Geophys. Res., 98, 16 66916 688, doi:10.1029/93JD01283.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., D. L. Jackson, V. Ramaswamy, M. D. Schwarzkopf, and X. Huang, 2005: The radiative signature of upper tropospheric moistening. Science, 310, 841844, doi:10.1126/science.1115602.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., and W. D. Braswell, 1997: How dry is the tropical free troposphere? Implications for a global warming theory. Bull. Amer. Meteor. Soc., 78, 10971106, doi:10.1175/1520-0477(1997)078<1097:HDITTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., D. L. Jackson, and I. Wittmeyer, 1996: Global observations of upper-tropospheric water vapor derived from TOVS radiance data. J. Climate, 9, 305326, doi:10.1175/1520-0442(1996)009<0305:GOOUTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vömel, H., and Coauthors, 2007: Radiation dry bias of the Vaisala RS92 humidity sensor. J. Atmos. Oceanic Technol., 24, 953963, doi:10.1175/JTECH2019.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J., L. Zhang, A. Dai, F. Immler, M. Sommer, and H. Vömel, 2013: Radiation dry bias correction of Vaisala RS92 humidity data and its impact on historical radiosonde data. J. Atmos. Oceanic Technol., 30, 197214, doi:10.1175/JTECH-D-12-00113.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J. R., and L. A. Chang, 1990: Retrieval of water vapor profiles from microwave radiometric measurements near 90 and 183 GHz. J. Appl. Meteor., 29, 10051013, doi:10.1175/1520-0450(1990)029<1005:ROWVPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., 1990: An algorithm for retrieving water vapor profiles in clear and cloudy atmospheres from 183 GHz radiometric measurements: Simulation studies. J. Appl. Meteor., 29, 508515, doi:10.1175/1520-0450(1990)029<0508:AAFRWV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2057 1691 57
PDF Downloads 200 58 3