An Investigation of Center-Finding Techniques for Tropical Cyclones in Mesoscale Models

David R. Ryglicki Fleet Numerical Meteorology and Oceanography Center, Monterey, California

Search for other papers by David R. Ryglicki in
Current site
Google Scholar
PubMed
Close
and
Robert E. Hart Department of Earth, Ocean, and Atmospheric Sciences, Florida State University, Tallahassee, Florida

Search for other papers by Robert E. Hart in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A variety of tropical-cyclone (TC) center-finding methods aggregated from previous works of mesoscale modeling and operational analysis are compared. The previous methods used can be divided into three classes: local extreme, weighted grid point, and minimization of azimuthal variance. To analyze these methods, four representative separate TC forecasts from three operational models—the Coupled Ocean–Atmosphere Mesoscale Prediction System Tropical Cyclone version, a Geophysical Fluid Dynamics Laboratory model, and the Hurricane Weather Research and Forecasting Model—are examined. It is found that for this dataset the spread of the derived TC centers is fairly small between 1000 and 600 hPa but begins to increase rapidly at higher levels. All models exhibit increased center spread at upper levels when the TCs’ strengths fall below approximately hurricane strength. On a given pressure level, tangential wind differences calculated from different centers are generally small and localized, whereas radial wind differences are often much larger in both space and relative magnitude. Center-finding techniques that use mass fields to calculate centers exhibit the smallest vertical tilts for hurricane-strength TCs. Conversely, potential vorticity centroids with large weighting areas produce the largest tilts. Given the potential sensitivity of center determination and implied tilt for various other measures of TC structure (radius of maximum winds), these results may have large repercussions on both past and future analyses.

Corresponding author address: David R. Ryglicki, Naval Research Laboratory, 7 Grace Hopper Ave., Stop 2, Rm. 254, Bldg. 704, Monterey, CA 93940. E-mail: david.ryglicki.ctr@nrlmry.navy.mil

Abstract

A variety of tropical-cyclone (TC) center-finding methods aggregated from previous works of mesoscale modeling and operational analysis are compared. The previous methods used can be divided into three classes: local extreme, weighted grid point, and minimization of azimuthal variance. To analyze these methods, four representative separate TC forecasts from three operational models—the Coupled Ocean–Atmosphere Mesoscale Prediction System Tropical Cyclone version, a Geophysical Fluid Dynamics Laboratory model, and the Hurricane Weather Research and Forecasting Model—are examined. It is found that for this dataset the spread of the derived TC centers is fairly small between 1000 and 600 hPa but begins to increase rapidly at higher levels. All models exhibit increased center spread at upper levels when the TCs’ strengths fall below approximately hurricane strength. On a given pressure level, tangential wind differences calculated from different centers are generally small and localized, whereas radial wind differences are often much larger in both space and relative magnitude. Center-finding techniques that use mass fields to calculate centers exhibit the smallest vertical tilts for hurricane-strength TCs. Conversely, potential vorticity centroids with large weighting areas produce the largest tilts. Given the potential sensitivity of center determination and implied tilt for various other measures of TC structure (radius of maximum winds), these results may have large repercussions on both past and future analyses.

Corresponding author address: David R. Ryglicki, Naval Research Laboratory, 7 Grace Hopper Ave., Stop 2, Rm. 254, Bldg. 704, Monterey, CA 93940. E-mail: david.ryglicki.ctr@nrlmry.navy.mil
Save
  • Avila, L. A., and W. Hogsett, 2012: Hurricane Daniel. NOAA Tropical Cyclone Rep. EP042012, 12 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/EP042012_Daniel.pdf.]

  • Bell, M. M., and M. T. Montgomery, 2008: Observed structure, evolution, and potential intensity of category 5 Hurricane Isabel (2003) from 12 to 14 September. Mon. Wea. Rev., 136, 20232046, doi:10.1175/2007MWR1858.1.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., and W.-C. Lee, 2012: Objective tropical cyclone center tracking using single-Doppler radar. J. Appl. Meteor. Climatol., 51, 878896, doi:10.1175/JAMC-D-11-0167.1.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., I. Ginis, R. Tuleya, B. Thomas, and T. Marchok, 2007: The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance. Mon. Wea. Rev., 135, 39653989, doi:10.1175/2007MWR2032.1.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., H. V. Senn, and C. L. Courtright, 1972: Airborne observations of eye configuration changes, bright band distribution, and precipitation tilt during the 1969 multiple seeding experiments in Hurricane Debby. Mon. Wea. Rev., 100, 208217, doi:10.1175/1520-0493(1972)100<0208:AROOEC>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2002: A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Wea. Rev., 130, 15731592, doi:10.1175/1520-0493(2002)130<1573:ACRSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2006: High-resolution simulation of Hurricane Bonnie (1998). Part II: Water budget. J. Atmos. Sci., 63, 1942, doi:10.1175/JAS3598.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 17701789, doi:10.1175/2008MWR2709.1.

    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., 2012: Hurricane Emilia. NOAA Tropical Cyclone Rep. EP052012, 13 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/EP052012_Emilia.pdf.]

  • Chang, P.-L., B. J.-D. Jou, and J. Zhang, 2009: An algorithm for tracking eyes of tropical cyclones. Wea. Forecasting, 24, 245261, doi:10.1175/2008WAF2222112.1.

    • Search Google Scholar
    • Export Citation
  • Cram, T. A., J. Persing, M. T. Montgomery, and S. A. Braun, 2007: A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a high-resolution simulation of Hurricane Bonnie (1998). J. Atmos. Sci., 64, 18351856, doi:10.1175/JAS3921.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C., S. C. Jones, and M. Riemer, 2008: Hurricane vortex dynamics during Atlantic extratropical transition. J. Atmos. Sci., 65, 714736, doi:10.1175/2007JAS2488.1.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and Coauthors, 2012: Real-time tropical cyclone prediction using COAMPS-TC. Atmospheric Science and Ocean Science, C.-C. Wu and J. Gan, Eds., Advances in Geosciences, Vol. 28, World Scientific, 1528.

  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Evans, J. L., and R. E. Hart, 2003: Objective indicators of the life cycle evolution of extratropical transition for Atlantic tropical cyclones. Mon. Wea. Rev., 131, 909925, doi:10.1175/1520-0493(2003)131<0909:OIOTLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1982: Large-scale characteristics of tropical cyclones. Mon. Wea. Rev., 110, 572586, doi:10.1175/1520-0493(1982)110<0572:LSCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 20442061, doi:10.1175/1520-0493(1999)127<2044:EOEFUT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., S. Goldberg, T. Quirino, X. Zhang, F. Marks, K.-S. Yeh, R. Atlas, and V. Tallapragada, 2012: Toward improving high-resolution numerical hurricane forecasting: Influence of model horizontal grid resolution, initialization, and physics. Wea. Forecasting, 27, 647666, doi:10.1175/WAF-D-11-00055.1.

    • Search Google Scholar
    • Export Citation
  • Halperin, D. J., H. E. Fuelberg, R. E. Hart, J. H. Cossuth, P. Sura, and R. J. Pasch, 2013: An evaluation of tropical cyclone genesis forecasts from global numerical models. Wea. Forecasting, 28, 14231445, doi:10.1175/WAF-D-13-00008.1.

    • Search Google Scholar
    • Export Citation
  • Hanley, D. E., J. Molinari, and D. Keyser, 2001: A composite study of the interactions between tropical cyclones and upper-tropospheric troughs. Mon. Wea. Rev., 129, 25702584, doi:10.1175/1520-0493(2001)129<2570:ACSOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., 2003: A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Wea. Rev., 131, 585616, doi:10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodyss, D., and D. Nolan, 2008: The Rossby-inertia-buoyancy instability in baroclinic vortices. Phys. Fluids, 20, 096602, doi:10.1063/1.2980354.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, doi:10.1002/qj.49712152406.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 2004: On the ability of dry tropical-cyclone-like vortices to withstand vertical shear. J. Atmos. Sci., 61, 114119, doi:10.1175/1520-0469(2004)061<0114:OTAODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kimberlain, T. B., 2012: Tropical Storm Debby. NOAA Tropical Cyclone Rep. AL042012, 51 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL042012_Debby.pdf.]

  • Kofron, D. E., E. A. Ritchie, and J. S. Tyo, 2010a: Determination of a consistent time for the extratropical transition of tropical cyclones. Part I: Examination of existing methods for finding “ET time.” Mon. Wea. Rev., 138, 43284343, doi:10.1175/2010MWR3180.1.

    • Search Google Scholar
    • Export Citation
  • Kofron, D. E., E. A. Ritchie, and J. S. Tyo, 2010b: Determination of a consistent time for the extratropical transition of tropical cyclones. Part II: Potential vorticity metrics. Mon. Wea. Rev., 138, 43444361, doi:10.1175/2010MWR3181.1.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y. K., and W. Frank, 2008: Dynamic instabilities of simulated hurricane-like vortices and their impacts on core structure of hurricanes. Part II: Moist experiments. J. Atmos. Sci., 65, 106122, doi:10.1175/2007JAS2132.1.

    • Search Google Scholar
    • Export Citation
  • Lee, W.-C., and F. D. Marks, 2000: Tropical cyclone kinematic structure retrieved from single-Doppler radar observations. Part II: The GBVTD-simplex center finding algorithm. Mon. Wea. Rev., 128, 19251936, doi:10.1175/1520-0493(2000)128<1925:TCKSRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., J. L. Holloway, and H. M. Stone, 1970: Tropical circulation in a time integration of a global model of the atmosphere. J. Atmos. Sci., 27, 580613, doi:10.1175/1520-0469(1970)027<0580:TCIATI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marchok, T. P., 2002: How the NCEP tropical cyclone tracker works. Preprints, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., P1.13. [Available online at https://ams.confex.com/ams/pdfpapers/37628.pdf.]

  • Marks, F. D., R. A. Houze, and J. F. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49, 919942, doi:10.1175/1520-0469(1992)049<0919:DAIOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Murillo, S. T., W.-C. Lee, M. M. Bell, G. M. Barnes, F. D. Marks, and P. P. Dodge, 2011: Intercomparison of ground-based velocity track display (GBVTD)-retrieved circulation centers and structures of Hurricane Danny (1997) from two coastal WSR-88Ds. Mon. Wea. Rev., 139, 153174, doi:10.1175/2010MWR3036.1.

    • Search Google Scholar
    • Export Citation
  • Nelder, J. A., and R. Mead, 1965: A simplex method for function minimization. Comput. J., 7, 308313, doi:10.1093/comjnl/7.4.308.

  • Nguyen, L. T., J. Molinari, and D. Thomas, 2014: Evaluation of tropical cyclone center identification methods in numerical models. Mon. Wea. Rev., 142, 43264339, doi:10.1175/MWR-D-14-00044.1.

    • Search Google Scholar
    • Export Citation
  • Rappin, E. D., and D. S. Nolan, 2012: The effect of vertical shear orientation on tropical cyclogenesis. Quart. J. Roy. Meteor. Soc., 138, 10351054, doi:10.1002/qj.977.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., and M. T. Montgomery, 2001: Three-dimensional alignment and corotation of weak, TC-like vortices via linear vortex Rossby waves. J. Atmos. Sci., 58, 23062330, doi:10.1175/1520-0469(2001)058<2306:TDAACO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., and M. D. Eastin, 2012: Rapidly intensifying Hurricane Guillermo (1997). Part II: Resilience in shear. Mon. Wea. Rev., 140, 425444, doi:10.1175/MWR-D-11-00080.1.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, F. D. Marks, and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 16531680, doi:10.1175/1520-0493(2000)128<1653:LWSAEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 322, doi:10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. D. Eastin, and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603631, doi:10.1175/2008MWR2487.1.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., R. Rogers, and S. Lorsolo, 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Wea. Rev., 141, 29492969, doi:10.1175/MWR-D-12-00334.1.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., X. Zhang, and S. Gopalakrishnan, 2014: Evaluation of shear-relative hurricane structure from the HWRF model. 31st Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 17D.3. [Available online at https://ams.confex.com/ams/31Hurr/webprogram/Paper244397.html.]

  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 31633188, doi:10.5194/acp-10-3163-2010.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., Y. Chen, W. Wang, C. Davis, J. Dudhia, and G. J. Holland, 2009: Large-eddy simulation of an idealized tropical cyclone. Bull. Amer. Meteor. Soc., 90, 17831788, doi:10.1175/2009BAMS2884.1.

    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., 2015: An analysis of a barotropically unstable, high-Rossby number vortex in shear. J. Atmos. Sci., 72, 21542179, doi:10.1175/JAS-D-14-0180.1.

    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., and R. E. Hart, 2012: An investigation of metrics used to determine the center of model tropical cyclones. 30th Conf. on Hurricanes and Tropical Meteorology, Ponte Vedra, FL, Amer. Meteor. Soc., 3A.5. [Available online at https://ams.confex.com/ams/30Hurricane/webprogram/Paper204836.html.]

  • Stern, D. S., and F. Zhang, 2013: How does the eye warm? Part II: Sensitivity to vertical wind shear and a trajectory analysis. J. Atmos. Sci., 70, 18491873, doi:10.1175/JAS-D-12-0258.1.

    • Search Google Scholar
    • Export Citation
  • Tsutsui, J. L., 2002: Implications of anthropogenic climate change for tropical cyclone activity: A case study with the NCAR CCM2. J. Meteor. Soc. Japan, 80, 4565, doi:10.2151/jmsj.80.45.

    • Search Google Scholar
    • Export Citation
  • Walsh, K. J. E., M. Fiorino, C. W. Landsea, and K. L. McInnes, 2007: Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Climate, 20, 23072314, doi:10.1175/JCLI4074.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Academic Press, 676 pp.

  • Willoughby, H. E., 1992: Linear motion of a shallow-water barotropic vortex as an initial-value problem. J. Atmos. Sci., 49, 20152031, doi:10.1175/1520-0469(1992)049<2015:LMOASW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., and M. B. Chelmow, 1982: Objective determination of hurricane tracks from aircraft observations. Mon. Wea. Rev., 110, 12981305, doi:10.1175/1520-0493(1982)110<1298:ODOHTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wimmers, A. J., and C. S. Velden, 2010: Objectively determining the rotational center of tropical cyclones in passive microwave satellite imagery. J. Appl. Meteor. Climatol., 49, 20132034, doi:10.1175/2010JAMC2490.1.

    • Search Google Scholar
    • Export Citation
  • Wong, K. Y., and C. L. Yip, 2009: Identifying centers of circulating and spiral vector field patterns and its applications. Pattern Recognit., 42, 13711387, doi:10.1016/j.patcog.2008.11.037.

    • Search Google Scholar
    • Export Citation
  • Wong, K. Y., P. W. Li, and W. W. Tsang, 2004: Automatic template matching method for tropical cyclone eye fix. Proc. 17th Int. Conf. Pattern Recognition (ICPR’04), Cambridge, United Kingdom, Institute of Electrical and Electronics Engineers Computer Society, 650653.

  • Wong, K. Y., P. W. Li, and W. W. Tsang, 2007: A novel algorithm for automatic tropical cyclone eye fix using Doppler radar data. Meteor. Appl., 14, 4959, doi:10.1002/met.5.

    • Search Google Scholar
    • Export Citation
  • Wong, K. Y., P. W. Li, and W. W. Tsang, 2008: Automatic tropical cyclone eye fix using genetic algorithm. Expert Syst. Appl., 34, 643656, doi:10.1016/j.eswa.2006.10.013.

    • Search Google Scholar
    • Export Citation
  • Wood, V. T., 1994: A technique for detecting a tropical cyclone center using a Doppler radar. J. Atmos. Oceanic Technol., 11, 12071216, doi:10.1175/1520-0426(1994)011<1207:ATFDAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., L. Wei, Y. Jin, Q. Zhao, and J. Cao, 2015: A dynamically constrained method for determining the vortex centers of tropical cyclones predicted by high-resolution models. J. Atmos. Sci., 72, 88103, doi:10.1175/JAS-D-14-0090.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2988 1846 39
PDF Downloads 851 162 17