Laser Ceilometer Investigation of Persistent Wintertime Cold-Air Pools in Utah’s Salt Lake Valley

Joseph Swyler Young University of Utah, Salt Lake City, Utah

Search for other papers by Joseph Swyler Young in
Current site
Google Scholar
PubMed
Close
and
C. David Whiteman University of Utah, Salt Lake City, Utah

Search for other papers by C. David Whiteman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

As part of the winter 2010/11 Persistent Cold-Air Pool Study in Utah’s Salt Lake Valley, a laser ceilometer was used to continuously measure aerosol-layer characteristics in support of an investigation of the meteorological processes producing the cold-air pools. A surface-based aerosol layer was present during much of the winter. Comparisons were made between ceilometer-measured and visual characteristics of the aerosol layers. A 3–4 January 2011 case study illustrated the meteorological value of time–height backscatter cross sections when used as a base map for meteorological analyses. A variety of meteorological mixing processes were illustrated using ceilometer backscatter data. The mean altitude of the top of the aerosol layer during undisturbed subperiods of the 1 December–7 February experimental period was 1811 m MSL, with a standard deviation of 185 m. The mean aerosol depth was ~500 m AGL in the 1200-m-deep valley. There was surprisingly little variation in the wintertime aerosol layer depth despite large variations in bulk atmospheric stability and ground-based fine particulate matter concentrations.

Corresponding author address: C. David Whiteman, Dept. of Atmospheric Sciences, University of Utah, 135 S 1460 E, Rm. 819, Salt Lake City, UT 84112-0110. E-mail: dave.whiteman@utah.edu

Abstract

As part of the winter 2010/11 Persistent Cold-Air Pool Study in Utah’s Salt Lake Valley, a laser ceilometer was used to continuously measure aerosol-layer characteristics in support of an investigation of the meteorological processes producing the cold-air pools. A surface-based aerosol layer was present during much of the winter. Comparisons were made between ceilometer-measured and visual characteristics of the aerosol layers. A 3–4 January 2011 case study illustrated the meteorological value of time–height backscatter cross sections when used as a base map for meteorological analyses. A variety of meteorological mixing processes were illustrated using ceilometer backscatter data. The mean altitude of the top of the aerosol layer during undisturbed subperiods of the 1 December–7 February experimental period was 1811 m MSL, with a standard deviation of 185 m. The mean aerosol depth was ~500 m AGL in the 1200-m-deep valley. There was surprisingly little variation in the wintertime aerosol layer depth despite large variations in bulk atmospheric stability and ground-based fine particulate matter concentrations.

Corresponding author address: C. David Whiteman, Dept. of Atmospheric Sciences, University of Utah, 135 S 1460 E, Rm. 819, Salt Lake City, UT 84112-0110. E-mail: dave.whiteman@utah.edu
Save
  • Arend, M., B. Gross, C. M. Gan, F. Moshary, Y. Wu, and S. Ahmed, 2010: Inter-comparison of vertical profiling instruments for boundary layer measurements in an urban setting. Preprints, 15th Symp. on Meteorological Observation and Instrumentation, Atlanta, GA, Amer. Meteor. Soc., 12.2. [Available online at https://ams.confex.com/ams/pdfpapers/165863.pdf.]

  • Di Giuseppe, F., A. Riccio, L. Caporaso, G. Bonafé, G. P. Gobbi, and F. Angelini, 2012: Automatic detection of atmospheric boundary layer height using ceilometer backscatter data assisted by a boundary layer model. Quart. J. Roy. Meteor. Soc., 138, 649663, doi:10.1002/qj.964.

    • Search Google Scholar
    • Export Citation
  • Emeis, S., 2011: Surface-Based Remote Sensing of the Atmospheric Boundary Layer. Atmospheric and Oceanographic Sciences Library, Vol. 40, Springer, 174 pp.

  • Emeis, S., C. Münkel, S. Vogt, W. J. Müller, and K. Schäfer, 2004: Atmospheric boundary-layer structure from simultaneous SODAR, RASS, and ceilometer measurements. Atmos. Environ., 38, 273286, doi:10.1016/j.atmosenv.2003.09.054.

    • Search Google Scholar
    • Export Citation
  • Emeis, S., C. Jahn, C. Münkel, C. Münsterer, and K. Schäfer, 2007: Multiple atmospheric layering and mixing-layer height in the Inn Valley observed by remote sensing. Meteor. Z., 16, 415424, doi:10.1127/0941-2948/2007/0203.

    • Search Google Scholar
    • Export Citation
  • Emeis, S., K. Schäfer, and C. Münkel, 2008: Surface-based remote sensing of the mixing-layer height—A review. Meteor. Z., 17, 621630, doi:10.1127/0941-2948/2008/0312.

    • Search Google Scholar
    • Export Citation
  • Emeis, S., K. Schäfer, and C. Münkel, 2009: Observation of the structure of the urban boundary layer with different ceilometers and validation by RASS data. Meteor. Z., 18, 149154, doi:10.1127/0941-2948/2009/0365.

    • Search Google Scholar
    • Export Citation
  • Eresmaa, N., J. Härkönen, S. M. Joffre, D. M. Schultz, A. Karppinen, and J. Kukkonen, 2012: A three-step method for estimating the mixing height using ceilometer data from the Helsinki Testbed. J. Appl. Meteor. Climatol., 51, 21722187, doi:10.1175/JAMC-D-12-058.1.

    • Search Google Scholar
    • Export Citation
  • Haeffelin, M., and Coauthors, 2012: Evaluation of mixing-height retrievals from automatic profiling lidars and ceilometers in view of future integrated networks in Europe. Bound.-Layer Meteor., 143, 4975, doi:10.1007/s10546-011-9643-z.

    • Search Google Scholar
    • Export Citation
  • Haij, M. D., W. Wauben, and H. K. Baltink, 2007: Continuous mixing layer height determination using the LD-40 ceilometer: A feasibility study. Royal Netherlands Meteorological Insititute Tech. Rep. WR 2007-01, 98 pp. [Available online at http://www.knmi.nl/publications/fulltexts/rp_bsikinsa_knmi_20070117_wr200701.pdf.]

  • Haman, C. L., B. Lefer, and G. A. Morris, 2012: Seasonal variability in the diurnal evolution of the boundary layer in a near-coastal urban environment. J. Atmos. Oceanic Technol., 29, 697710, doi:10.1175/JTECH-D-11-00114.1.

    • Search Google Scholar
    • Export Citation
  • Hayden, K., K. Anlauf, R. Hoff, J. Strapp, J. Bottenheim, H. Wiebe, F. Froude, and J. Martin, 1997: The vertical chemical and meteorological structure of the boundary layer in the Lower Fraser Valley during Pacific’93. Atmos. Environ., 31, 20892105, doi:10.1016/S1352-2310(96)00300-7.

    • Search Google Scholar
    • Export Citation
  • Heese, B., H. Flentje, D. Althausen, A. Ansmann, and S. Frey, 2010: Ceilometer lidar comparison: Backscatter coefficient retrieval and signal-to-noise ratio determination. Atmos. Meas. Technol., 3, 17631770, doi:10.5194/amt-3-1763-2010.

    • Search Google Scholar
    • Export Citation
  • Lareau, N., and J. Horel, 2015a: Dynamically induced displacements of a persistent cold-air pool. Bound.-Layer Meteor., 154, 291316, doi:10.1007/s10546-014-9968-5.

    • Search Google Scholar
    • Export Citation
  • Lareau, N., and J. Horel, 2015b: Turbulent erosion of persistent cold-air pools: Numerical simulations. J. Atmos. Sci., 72, 14091427, doi:10.1175/JAS-D-14-0173.1.

    • Search Google Scholar
    • Export Citation
  • Lareau, N., E. Crosman, C. D. Whiteman, J. D. Horel, S. W. Hoch, W. O. J. Brown, and T. W. Horst, 2013: The Persistent Cold-Air Pool Study. Bull. Amer. Meteor. Soc., 94, 5163, doi:10.1175/BAMS-D-11-00255.1.

    • Search Google Scholar
    • Export Citation
  • McKendry, I. G., D. van der Kamp, K. B. Strawbridge, A. Christen, and B. Crawford, 2009: Simultaneous observations of boundary-layer aerosol layers with CL31 ceilometer and 1064/532 nm lidar. Atmos. Environ., 43, 58475852, doi:10.1016/j.atmosenv.2009.07.063.

    • Search Google Scholar
    • Export Citation
  • Melfi, S. H., J. D. Spinhirne, S.-H. Chou, and S. P. Palm, 1985: Lidar observations of vertically organized convection in the planetary boundary layer over the ocean. J. Climate Appl. Meteor., 24, 806821, doi:10.1175/1520-0450(1985)024<0806:LOOVOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Menut, L., C. Flamant, J. Pelon, and P. H. Flamant, 1999: Urban boundary-layer height determination from lidar measurements over the Paris area. Appl. Opt., 38, 945954, doi:10.1364/AO.38.000945.

    • Search Google Scholar
    • Export Citation
  • Münkel, C., S. Emeis, W. J. Mueller, and K. P. Schaefer, 2004: Aerosol concentration measurements with a lidar ceilometer: Results of a one year measuring campaign. Remote Sensing of Clouds and the Atmosphere VIII, K. Schaefer et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 5235), 486–496, doi:10.1117/12.511104.

  • Münkel, C., N. Eresmaa, J. Räsänen, and A. Karppinen, 2007: Retrieval of mixing height and dust concentration with lidar ceilometer. Bound.-Layer Meteor., 124, 117128, doi:10.1007/s10546-006-9103-3.

    • Search Google Scholar
    • Export Citation
  • Muñoz, R. C., and A. A. Undurraga, 2010: Daytime mixed layer over the Santiago Basin: Description of two years of observations with a lidar ceilometer. J. Appl. Meteor. Climatol., 49, 17281741, doi:10.1175/2010JAMC2347.1.

    • Search Google Scholar
    • Export Citation
  • Piironen, A. K., and E. W. Eloranta, 1995: Convective boundary layer mean depths and cloud geometrical properties obtained from volume imaging lidar data. J. Geophys. Res., 100, 25 56925 576, doi:10.1029/94JD02604.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., M.-F. Lamoureux, L. R. Bissonnette, and R. M. Peters, 1997: Quantitative interpretation of laser ceilometer intensity profiles. J. Atmos. Oceanic Technol., 14, 396411, doi:10.1175/1520-0426(1997)014<0396:QIOLCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seibert, P., F. Beyrich, S.-E. Gryning, S. Joffre, A. Rasmussen, and P. Tercier, 2000: Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34, 10011027, doi:10.1016/S1352-2310(99)00349-0.

    • Search Google Scholar
    • Export Citation
  • Sicard, M., C. Pérez, F. Rocadenbosch, J. M. Baldasano, and D. García-Vizcaino, 2006: Mixed-layer depth determination in the Barcelona coastal area from regular lidar measurements: Methods, results and limitations. Bound.-Layer Meteor., 119, 135157, doi:10.1007/s10546-005-9005-9.

    • Search Google Scholar
    • Export Citation
  • Silcox, G., K. Kelly, E. Crosman, C. D. Whiteman, and B. Allen, 2012: Wintertime PM2.5 concentrations during persistent, multi-day cold-air pools in a mountain valley. Atmos. Environ., 46, 1724, doi:10.1016/j.atmosenv.2011.10.041.

    • Search Google Scholar
    • Export Citation
  • Steyn, D., M. Baldi, and R. Hoff, 1999: The detection of mixed layer depth and entrainment zone thickness from lidar backscatter profiles. J. Atmos. Oceanic Technol., 16, 953959, doi:10.1175/1520-0426(1999)016<0953:TDOMLD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Springer, 666 pp.

  • Vaisala, 2004: Vaisala ceilometer CL31 user’s guide. Vaisala Rep. M210482EN-B, Helsinki, Finland, 127 pp.

  • van der Kamp, D., 2008: Ceilometer observations of Vancouver’s urban boundary layer. M.S. thesis, Dept. of Geography, University of British Columbia, Vancouver, BC, Canada, 134 pp. [Available online at https://circle.ubc.ca/bitstream/handle/2429/1599/ubc_2008_fall_vanderkamp_derek.pdf?sequence=1.]

  • Whiteman, C. D., X. Bian, and S. Zhong, 1999: Wintertime evolution of the temperature inversion in the Colorado Plateau basin. J. Appl. Meteor., 38, 11031117, doi:10.1175/1520-0450(1999)038<1103:WEOTTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., S. W. Hoch, J. D. Horel, and A. Charland, 2014: Relationship between particulate air pollution and meteorological variables in Utah's Salt Lake Valley. Atmos. Environ., 94, 742753, doi:10.1016/j.atmosenv.2014.06.012.

    • Search Google Scholar
    • Export Citation
  • Young, J. S., 2013: Investigation of wintertime cold-air pools and aerosol layers in the Salt Lake Valley using a lidar ceilometer. M.S. thesis, Dept. of Atmospheric Sciences, University of Utah, Salt Lake City, UT, 106 pp. [Available online at http://gradworks.umi.com/15/50/1550281.html.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1472 988 28
PDF Downloads 389 103 4