Microphysical Constraints on Millimeter-Wavelength Scattering Properties of Snow Particles

Norman B. Wood Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Norman B. Wood in
Current site
Google Scholar
PubMed
Close
,
Tristan S. L’Ecuyer Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Tristan S. L’Ecuyer in
Current site
Google Scholar
PubMed
Close
,
Andrew J. Heymsfield National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Andrew J. Heymsfield in
Current site
Google Scholar
PubMed
Close
, and
Graeme L. Stephens NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Graeme L. Stephens in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A Bayesian optimal estimation retrieval is used to determine probability density functions of snow microphysical parameters from ground-based observations taken during four snowfall events in southern Ontario, Canada. The retrieved variables include the parameters of power laws describing particle mass and horizontally projected area. The results reveal nontrivial correlations between mass and area parameters that were not apparent in prior studies. The observations provide information mainly about the mass coefficient , somewhat less information about the mass exponent and the projected area coefficient , and minimal information about the projected area exponent . The expected values for retrieved mass power-law parameters = 0.003 28 and = 2.25 are consistent with those from several prior studies that looked at the mass of aggregate-like particles and precipitating ice aloft as functions of maximum particle dimension. Differences from other studies appear related to differences in the dimensions used to define particle size. The retrieval allows the analysis of relatively large volumes of continuous observations, greatly enhancing sampling relative to single-particle analyses. The retrieved properties are used to constrain 94-GHz (W band) radar scattering properties for a variety of snow particle shapes. Synthetic reflectivities calculated using these scattering properties and observed particle size distributions show that a branched, spatial aggregate-like particle produces good agreement with coincident observed W-band reflectivities. Uncertainties in the synthetic reflectivities, estimated by applying a simple error-propagation model, are substantial and are dominated by the uncertainties in and .

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Norman B. Wood, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, 1225 West Dayton Street, Madison, WI 53706. E-mail: norman.wood@ssec.wisc.edu

Abstract

A Bayesian optimal estimation retrieval is used to determine probability density functions of snow microphysical parameters from ground-based observations taken during four snowfall events in southern Ontario, Canada. The retrieved variables include the parameters of power laws describing particle mass and horizontally projected area. The results reveal nontrivial correlations between mass and area parameters that were not apparent in prior studies. The observations provide information mainly about the mass coefficient , somewhat less information about the mass exponent and the projected area coefficient , and minimal information about the projected area exponent . The expected values for retrieved mass power-law parameters = 0.003 28 and = 2.25 are consistent with those from several prior studies that looked at the mass of aggregate-like particles and precipitating ice aloft as functions of maximum particle dimension. Differences from other studies appear related to differences in the dimensions used to define particle size. The retrieval allows the analysis of relatively large volumes of continuous observations, greatly enhancing sampling relative to single-particle analyses. The retrieved properties are used to constrain 94-GHz (W band) radar scattering properties for a variety of snow particle shapes. Synthetic reflectivities calculated using these scattering properties and observed particle size distributions show that a branched, spatial aggregate-like particle produces good agreement with coincident observed W-band reflectivities. Uncertainties in the synthetic reflectivities, estimated by applying a simple error-propagation model, are substantial and are dominated by the uncertainties in and .

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Norman B. Wood, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, 1225 West Dayton Street, Madison, WI 53706. E-mail: norman.wood@ssec.wisc.edu
Save
  • Atlas, D., M. Kerker, and W. Hitschfeld, 1953: Scattering and attenuation by non-spherical atmospheric particles. J. Atmos. Terr. Phys., 3, 108119, doi:10.1016/0021-9169(53)90093-2.

    • Search Google Scholar
    • Export Citation
  • Boggs, P. T., R. H. Byrd, J. E. Rogers, and R. B. Schnabel, 1992: User’s reference guide for ODRPACK version 2.01 software for weighted orthogonal distance regression. U.S. Department of Commerce, National Institute of Standards and Technology, Applied Computational Mathematics Division Tech. Rep. NISTIR 92-4834, 99 pp. [Available online at http://docs.scipy.org/doc/external/odrpack_guide.pdf.]

  • Bohren, C. F., and S. B. Singham, 1991: Backscattering by nonspherical particles: A review of methods and suggested new approaches. J. Geophys. Res., 96, 52695277, doi:10.1029/90JD01138.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Z. K. Ikeda, M. Schoenhuber, and R. M. Rasmussen, 2007: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteor. Climatol., 46, 634650, doi:10.1175/JAM2489.1.

    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12, 410414, doi:10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • CIRA, cited 2013: CLEX-10 daily operations page. Cooperative Institute for Research in the Atmosphere. [Available online at http://wwwold.cira.colostate.edu/cira/GeoSci/CLEX/clex_main/clex10/clex10.html.]

  • Dennis, J. E., and R. B. Schnabel, 1983: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, 378 pp.

  • Draine, B. T., 1988: The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys. J., 333, 848872, doi:10.1086/166795.

    • Search Google Scholar
    • Export Citation
  • Draine, B. T., and P. J. Flatau, 1994: Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Amer., 11A, 14911499, doi:10.1364/JOSAA.11.001491.

    • Search Google Scholar
    • Export Citation
  • Draine, B. T., and P. J. Flatau, 2010: User guide to the discrete dipole approximation code DDSCAT 7.1. 83 pp. [Available online at http://arxiv.org/pdf/1002.1505.pdf.]

  • Fabry, F., and I. Zawadzki, 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52, 838851, doi:10.1175/1520-0469(1995)052<0838:LTROOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goodison, B. E., P. Y. T. Louis, and D. Yang, 1998: WMO solid precipitation measurements intercomparison: Final report. Instruments and Observing Methods Rep. 67, WMO Tech. Doc. WMO/TD 872, 300 pp.

  • Grumm, R. H., and N. A. Stuart, 2007: Ensemble predictions of the 2007 Valentine’s Day winter storm. Proc. 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., P2.49. [Available online at http://ams.confex.com/ams/pdfpapers/123823.pdf.]

  • Heymsfield, A. J., and M. Kajikawa, 1987: An improved approach to calculating terminal velocities of plate-like crystals and graupel. J. Atmos. Sci., 44, 10881099, doi:10.1175/1520-0469(1987)044<1088:AIATCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and C. D. Westbrook, 2010: Advancements in the estimation of ice particle fall speeds using laboratory and field measurements. J. Atmos. Sci., 67, 24692482, doi:10.1175/2010JAS3379.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., C. Schmitt, and A. Bansemer, 2010: Improved representation of ice particle masses based on observations in natural clouds. J. Atmos. Sci., 67, 33033318, doi:10.1175/2010JAS3507.1.

    • Search Google Scholar
    • Export Citation
  • Huang, G.-J., V. N. Bringi, R. Cifelli, D. Hudak, and W. A. Petersen, 2010: A methodology to derive radar reflectivity–liquid equivalent snow rate relations using C-band radar and a 2D video disdrometer. J. Atmos. Oceanic Technol., 27, 637651, doi:10.1175/2009JTECHA1284.1.

    • Search Google Scholar
    • Export Citation
  • Hudak, D., H. Barker, P. Rodriguez, and D. Donovan, 2006: The Canadian CloudSat validation project. Proc. Fourth European Conf. on Radar in Meteorology and Hydrology, Barcelona, Spain, ERAD, 609612. [Available online at http://www.crahi.upc.edu/ERAD2006/proceedingsMask/00165.pdf.]

  • Hudak, D., and Coauthors, 2012: GPM Cold Season Precipitation Experiment (GCPEx). Proc. Meteorological Satellite Conf., Sopot, Poland, EUMETSAT, P61_S4_08. [Available online at http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_CONF_P61_S4_08_HUDAK_V&RevisionSelectionMethod=LatestReleased&Rendition=Web.]

  • Korolev, A., and G. Isaac, 2003: Roundness and aspect ratio of particles in ice clouds. J. Atmos. Sci., 60, 17951808, doi:10.1175/1520-0469(2003)060<1795:RAAROP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kruger, A., and W. F. Krajewski, 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19, 602617, doi:10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., W. A. Petersen, and D. N. Moisseev, 2010: The Light Precipitation Validation Experiment (LPVEx): Overview and early results. 2010 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A13K-02. [Available online at http://abstractsearch.agu.org/meetings/2010/FM/sections/A/sessions/A13K/abstracts/A13K-02.html.]

  • Liu, C.-L., and A. J. Illingworth, 1997: Error analysis of backscatter from discrete dipole approximations for different ice particle shapes. Atmos. Res., 44, 231241, doi:10.1016/S0169-8095(97)00019-7.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, doi:10.1029/JC079i015p02185.

    • Search Google Scholar
    • Export Citation
  • Löhnert, U., S. Kneifel, A. Battaglia, M. Hagen, L. Hirsch, and S. Crewell, 2011: A multisensor approach toward a better understanding of snowfall microphysics. Bull. Amer. Meteor. Soc., 92, 613628, doi:10.1175/2010BAMS2909.1.

    • Search Google Scholar
    • Export Citation
  • Magono, C., and T. Nakamura, 1965: Aerodynamic studies of falling snowflakes. J. Meteor. Soc. Japan, 43, 139147.

  • Magono, C., and C. W. Lee, 1966: Meteorological classification of natural snow crystals. J. Fac. Sci. Hokkaido Univ. Ser. 2, 7, 321335.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2007: Modeling backscatter properties of snowfall at millimeter wavelengths. J. Atmos. Sci., 64, 17271736, doi:10.1175/JAS3904.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., A. J. Heymsfield, and Z. Wang, 2005a: Dual-frequency radar ratio of nonspherical atmospheric hydrometeors. Geophys. Res. Lett., 32, L13816, doi:10.1029/2005GL023210.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. F. Reinking, and I. V. Djalalova, 2005b: Inferring fall attitudes of pristine dendritic crystals from polarimetric radar data. J. Atmos. Sci., 62, 241250, doi:10.1175/JAS-3356.1.

    • Search Google Scholar
    • Export Citation
  • Mead, J. B., A. L. Pazmany, S. M. Sekelsky, and R. E. McIntosh, 1994: Millimeter-wave radars for remotely sensing clouds and precipitation. IEEE Trans. Geosci. Remote, 82, 18911906.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimension power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, doi:10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., and A. J. Heymsfield, 2005: Refinements in the treatment of ice particle terminal velocities, highlighting aggregates. J. Atmos. Sci., 62, 16371644, doi:10.1175/JAS3413.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., R. Zhang, and R. L. Pitter, 1990: Mass-dimensional relationships for ice particles and the influence of riming on snowfall rates. J. Appl. Meteor., 29, 153163, doi:10.1175/1520-0450(1990)029<0153:MDRFIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Muramoto, K., K. Matsuura, and T. Shiina, 1995: Measuring the density of snow particles and snowfall rate. Electron. Commun. Japan, 78, 7179, doi:10.1002/ecjc.4430781107.

    • Search Google Scholar
    • Export Citation
  • Newman, A. J., P. A. Kucera, and L. F. Bliven, 2009: Presenting the snowflake video imager (SVI). J. Atmos. Oceanic Technol., 26, 167179, doi:10.1175/2008JTECHA1148.1.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., and W. Huang, 2010: Microwave backscatter and extinction by soft ice spheres and complex snow aggregates. J. Atmos. Sci., 67, 769787, doi:10.1175/2009JAS3146.1.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C., 2000: Inverse Methods for Atmospheric Sounding. World Scientific Publishing, 240 pp.

  • Sadowy, G. A., 1999: A 95 GHz airborne cloud radar: Statistics of cloud reflectivity and analysis of beam-filling errors for a proposed spaceborne cloud radar. Ph.D. thesis, University of Massachusetts Amherst, 79 pp. [Available from UMI, 300 N. Zeeb Rd., Ann Arbor, MI 48103, UMI Number 9932344.]

  • Schneider, T. L., and G. L. Stephens, 1995: Theoretical aspects of modeling backscattering by cirrus ice particles at millimeter wavelengths. J. Atmos. Sci., 52, 43674385, doi:10.1175/1520-0469(1995)052<4367:TAOMBB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sekelsky, S. M., and Coauthors, 1999: Radar calibration validation for the SGP CART summer 1998 DC-8 cloud radar experiment. Proc. Ninth ARM Science Team Meeting, San Antonio, TX, U.S. Department of Energy, 15. [Available online at https://www.arm.gov/publications/proceedings/conf09/extended_abs/sekelsky_sm.pdf.]

  • Shannon, C. E., and W. Weaver, 1949: The Mathematical Theory of Communication. University of Illinois Press, 117 pp.

  • Stephens, G. L., and Coauthors, 2008: Cloudsat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, doi:10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Vaisala Oyj, 2002: Weather sensor FD12P user’s guide M210296en-A. Vaisala, 154 pp. [Available online at http://www.vaisala.com/Vaisala Documents/User Guides and Quick Ref Guides/FD12P User Guide in English.pdf.]

  • Warren, S. G., 1984: Optical constants of ice from the ultraviolet to the microwave. Appl. Opt., 23, 12061225, doi:10.1364/AO.23.001206.

    • Search Google Scholar
    • Export Citation
  • Wood, N. B., T. S. L’Ecuyer, F. L. Bliven, and G. L. Stephens, 2013: Characterization of video disdrometer uncertainties and impacts on estimates of snowfall rate and radar reflectivity. Atmos. Meas. Tech., 6, 36353648, doi:10.5194/amt-6-3635-2013.

    • Search Google Scholar
    • Export Citation
  • Wood, N. B., T. S. L’Ecuyer, A. J. Heymsfield, G. L. Stephens, D. R. Hudak, and P. Rodriguez, 2014: Estimating snow microphysical properties using collocated multisensor observations. J. Geophys. Res. Atmos., 119, 89418961, doi:10.1002/2013JD021303.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1049 655 26
PDF Downloads 256 56 7