Prediction of Maize Yield Response to Climate Change with Climate and Crop Model Uncertainties

Yi Zhang Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Yi Zhang in
Current site
Google Scholar
PubMed
Close
,
Yanxia Zhao Shanghai Institute of Meteorological Sciences, Shanghai, and Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Yanxia Zhao in
Current site
Google Scholar
PubMed
Close
,
Sining Chen Tianjin Climate Center, Tianjin, China

Search for other papers by Sining Chen in
Current site
Google Scholar
PubMed
Close
,
Jianping Guo Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Jianping Guo in
Current site
Google Scholar
PubMed
Close
, and
Enli Wang CSIRO Land and Water, Canberra, Australian Capital Territory, Australia

Search for other papers by Enli Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Projections of climate change impacts on crop yields are subject to uncertainties, and quantification of such uncertainty is essential for the effective use of the projection results for adaptation and mitigation purposes. This work analyzes the uncertainties in maize yield predictions using two crop models together with three climate projections downscaled with one regional climate model nested with three global climate models under the A1B emission scenario in northeast China (NEC). Projections were evaluated for the Zhuanghe agrometeorological station in NEC for the 2021–50 period, taking 1971–2000 as the baseline period. The results indicated a yield reduction of 13% during 2021–50, with 95% probability intervals of (−41%, +12%) relative to 1971–2000. Variance decomposition of the yield projections showed that uncertainty in the projections caused by climate and crop models is likely to change with prediction period, and climate change uncertainty generally had a larger impact on projections than did crop model uncertainty during the 2021–50 period. In addition, downscaled climate projections had significant bias that can introduce significant uncertainties in yield projections. Therefore, they have to be bias corrected before use.

Corresponding author address: Yanxia Zhao, Shanghai Institute of Meteorological Sciences, Puxi Road 166, Xuhui District, Shanghai 200030, China. E-mail: zyx@cams.cma.gov.cn

Abstract

Projections of climate change impacts on crop yields are subject to uncertainties, and quantification of such uncertainty is essential for the effective use of the projection results for adaptation and mitigation purposes. This work analyzes the uncertainties in maize yield predictions using two crop models together with three climate projections downscaled with one regional climate model nested with three global climate models under the A1B emission scenario in northeast China (NEC). Projections were evaluated for the Zhuanghe agrometeorological station in NEC for the 2021–50 period, taking 1971–2000 as the baseline period. The results indicated a yield reduction of 13% during 2021–50, with 95% probability intervals of (−41%, +12%) relative to 1971–2000. Variance decomposition of the yield projections showed that uncertainty in the projections caused by climate and crop models is likely to change with prediction period, and climate change uncertainty generally had a larger impact on projections than did crop model uncertainty during the 2021–50 period. In addition, downscaled climate projections had significant bias that can introduce significant uncertainties in yield projections. Therefore, they have to be bias corrected before use.

Corresponding author address: Yanxia Zhao, Shanghai Institute of Meteorological Sciences, Puxi Road 166, Xuhui District, Shanghai 200030, China. E-mail: zyx@cams.cma.gov.cn
Save
  • Asseng, S., and Coauthors, 2013: Uncertainty in simulating wheat yields under climate change. Nat. Climate Change, 3, 827832, doi:10.1038/nclimate1916.

    • Search Google Scholar
    • Export Citation
  • Baigorria, G. A., J. W. Hansen, N. Ward, J. W. Jones, and J. J. O’Brien, 2008: Assessing predictability of cotton yields in the southeastern United States based on regional atmospheric circulation and surface temperatures. J. Appl. Meteor. Climatol., 47, 7691, doi:10.1175/2007JAMC1523.1.

    • Search Google Scholar
    • Export Citation
  • Berg, A., N. de Noblet-Ducoudré, B. Sultan, M. Lengaigne, and M. Guimberteau, 2013: Projections of climate change impacts on potential C4 crop productivity over tropical regions. Agric. For. Meteor., 170, 89102, doi:10.1016/j.agrformet.2011.12.003.

    • Search Google Scholar
    • Export Citation
  • Ceglar, A., and L. Kajfež-Bogataj, 2012: Simulation of maize yield in current and changed climatic conditions: Addressing modelling uncertainties and the importance of bias correction in climate model simulations. Eur. J. Agron., 37, 8395, doi:10.1016/j.eja.2011.11.005.

    • Search Google Scholar
    • Export Citation
  • Ceglar, A., Z. Črepinšek, L. Kajfež-Bogataj, and T. Pogačar, 2011: The simulation of phenological development in dynamic crop model: The Bayesian comparison of different methods. Agric. For. Meteor., 151, 101115, doi:10.1016/j.agrformet.2010.09.007.

    • Search Google Scholar
    • Export Citation
  • Devkota, K. P., A. M. Manschadi, M. Devkota, J. P. A. Lamers, E. Ruzibaev, O. Egamberdiev, E. Amiri, and P. L. G. Vlek, 2013: Simulating the impact of climate change on rice phenology and grain yield in irrigated drylands of central Asia. J. Appl. Meteor. Climatol., 52, 20332050, doi:10.1175/JAMC-D-12-0182.1.

    • Search Google Scholar
    • Export Citation
  • Gao, X., Z. Zhao, Y. Ding, R. Huang, and F. Giorgi, 2001: Climate change due to greenhouse effects in China as simulated by a regional climate model. Adv. Atmos. Sci., 18, 12241230, doi:10.1007/s00376-001-0036-y.

    • Search Google Scholar
    • Export Citation
  • Gao, X., Y. Shi, and F. Giorgi, 2011: A high resolution simulation of climate change over China. Chin. Sci. Bull., 54, 462472, doi:10.1007/s11430-010-4035-7.

    • Search Google Scholar
    • Export Citation
  • Gao, X., Y. Shi, D. Zhang, and F. Giorgi, 2012a: Climate change in China in the 21st century as simulated by a high resolution regional climate model. Chin. Sci. Bull., 57, 11881195, doi:10.1007/s11434-011-4935-8.

    • Search Google Scholar
    • Export Citation
  • Gao, X., Y. Shi, D. Zhang, J. Wu, F. Giorgi, Z. Ji, and Y. Wang, 2012b: Uncertainties in monsoon precipitation projections over China: Results from two high-resolution RCM simulations. Climate Res., 52, 213226, doi:10.3354/cr01084.

    • Search Google Scholar
    • Export Citation
  • Gao, X., M. L. Wang, and F. Giorgi, 2013: Climate change over China in the 21st century as simulated by BCC_CSM1.1-RegCM4.0. Atmos. Ocean. Sci. Lett., 6, 381386, doi:10.3878/j.issn.1674-2834.13.0029.

    • Search Google Scholar
    • Export Citation
  • Garrido, A., D. Rey, M. Ruiz–Ramos, and M. I. Mĺnguez, 2011: Climate change and crop adaptation in Spain: Consistency of regional climate models. Climate Res., 49, 211227, doi:10.3354/cr01029.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and Coauthors, 2012: RegCM4: Model description and illustrative basic performance over selected CORDEX domains. Climate Res., 52, 729, doi:10.3354/cr01018.

    • Search Google Scholar
    • Export Citation
  • Iizumi, T., M. Yokozawa, and M. Nishinori, 2009: Parameter estimation and uncertainty analysis of a large-scale crop model for paddy rice: Application of a Bayesian approach. Agric. For. Meteor., 149, 333348, doi:10.1016/j.agrformet.2008.08.015.

    • Search Google Scholar
    • Export Citation
  • Jamieson, P. D., J. R. Porter, and D. R. Wilson, 1991: A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Res., 27, 337350, doi:10.1016/0378-4290(91)90040-3.

    • Search Google Scholar
    • Export Citation
  • K-1 Model Developers, 2004: K-1 coupled model (MIROC) description. K-1 Tech. Rep. 1, Center for Climate Systems Research, University of Tokyo, 34 pp.

  • Keating, B. A., and Coauthors, 2003: An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron., 18, 267288, doi:10.1016/S1161-0301(02)00108-9.

    • Search Google Scholar
    • Export Citation
  • Krishnan, P., D. K. Swain, B. Chanddra Bhaskar, S. K. Nayak, and R. N. Dash, 2007: Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agric. Ecosyst. Environ., 122, 233242, doi:10.1016/j.agee.2007.01.019.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., X. Yang, K. G. Hubbard, and X. Lin, 2012a: Maize potential yields and yield gaps in the changing climate of northeast China. Global Change Biol., 18, 34413454, doi:10.1111/j.1365-2486.2012.02774.x.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., X. Yang, J. Wang, S. , K.-N. Li, X. Xun, and E.-L. Wang, 2012b: Adaptability of APSIM maize model in northeast China (in Chinese).Acta Agron. Sin., 38, 740746, doi:10.3724/SP.J.1006.2012.00740.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., K. Hubbard, X. Lin, and X. Yang, 2013: Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in northeast China. Global Change Biol., 19, 34813492, doi:10.1111/gcb.12324.

    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., and M. B. Burke, 2010: On the use of statistical models to predict crop yield responses to climate change. Agric. For. Meteor., 150, 14431452, doi:10.1016/j.agrformet.2010.07.008.

    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., and S. M. Gourdji, 2012: The influence of climate change on global crop productivity. Plant Physiol., 160, 16861697, doi:10.1104/pp.112.208298.

    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., C. B. Field, K. N. Cahill, and C. Bonfils, 2006: Impacts of future climate change on California perennial crop yields: Model projections with climate and crop uncertainties. Agric. For. Meteor., 141, 208218, doi:10.1016/j.agrformet.2006.10.006.

    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., M. B. Burke, C. Tebaldi, M. D. Mastrandrea, W. P. Falcon, and R. L. Naylor, 2008: Prioritizing climate change adaptation needs for food security in 2030. Science, 319, 607610, doi:10.1126/science.1152339.

    • Search Google Scholar
    • Export Citation
  • Pal, J., and Coauthors, 2007: Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET. Bull. Amer. Meteor. Soc., 88, 13951409, doi:10.1175/BAMS-88-9-1395.

    • Search Google Scholar
    • Export Citation
  • Pope, V. D., M. L. Gallani, P. R. Rowntree, and R. A. Stratton, 2000: The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3. Climate Dyn., 16, 123146, doi:10.1007/s003820050009.

    • Search Google Scholar
    • Export Citation
  • Ritchie, J. T., and S. Otter, 1985: Description and performance of CERES-Wheat: A user oriented wheat yield model. ARS Wheat Yield Project, W. O. Willis, Ed., Agricultural Research Service Series, No. 38, USDA, 159–175.

  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Max Planck Institute for Meteorology Rep. 349, 127 pp. [Available online at http://www.mpimet.mpg.de/fileadmin/publikationen/Reports/max_scirep_349.pdf.]

  • Rosenzweig, C., and Coauthors, 2014: Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. USA, 111, 32683273, doi:10.1073/pnas.1222463110.

    • Search Google Scholar
    • Export Citation
  • Roudier, P., B. Sultan, P. Quirion, and A. Berg, 2011: The impact of future climate change on West African crop yields: What does the recent literature say? Global Environ. Change, 21, 10731083, doi:10.1016/j.gloenvcha.2011.04.007.

    • Search Google Scholar
    • Export Citation
  • Ruane, A. C., and Coauthors, 2013: Climate change impact uncertainties for maize in Panama: Farm information, climate projections, and yield sensitivities. Agric. For. Meteor., 170, 132145, doi:10.1016/j.agrformet.2011.10.015.

    • Search Google Scholar
    • Export Citation
  • Schlenker, W., and M. J. Roberts, 2009: Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. USA, 106, 15 59415 598, doi:10.1073/pnas.0906865106.

    • Search Google Scholar
    • Export Citation
  • Semenov, M. A., and P. Stratonovitch, 2010: Use of multi-model ensembles from global climate models for assessment of climate change impacts. Climate Res., 41, 114, doi:10.3354/cr00836.

    • Search Google Scholar
    • Export Citation
  • Tao, F., and Z. Zhang, 2011: Impacts of climate change as a function of global mean temperature: Maize productivity and water use in China. Climatic Change, 105, 409432, doi:10.1007/s10584-010-9883-9.

    • Search Google Scholar
    • Export Citation
  • Tao, F., Z. Zhang, J. Liu, and M. Yokozawa, 2009: Modelling the impacts of weather and climate variability on crop productivity over a large area: A new super-ensemble-based probabilistic projection. Agric. For. Meteor., 149, 12661278, doi:10.1016/j.agrformet.2009.02.015.

    • Search Google Scholar
    • Export Citation
  • Tao, F., and Coauthors, 2013: Single rice growth period was prolonged by cultivars shifts, but yield was damaged by climate change during 1981–2009 in China, and late rice was just opposite. Global Change Biol., 19, 32003209, doi:10.1111/gcb.12250.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., and D. B. Lobell, 2008: Towards probabilistic projections of climate change impacts on global crop yields. Geophys. Res. Lett., 35, L08705, doi:10.1029/2008GL033423.

    • Search Google Scholar
    • Export Citation
  • Thaler, S., J. Eitzinger, M. Trnka, and M. Dubrovsky, 2012: Impacts of climate change and alternative adaptation options on winter wheat yield and water productivity in a dry climate in central Europe. J. Agric. Sci.,150, 537–555, doi:10.1017/S0021859612000093.

  • van der Linden, P., and J. F. B. Mitchell, 2009: ENSEMBLES: Climate change and its impacts: Summary of Research and Results from the ENSEMBLES Project. Met Office Hadley Centre, 160 pp.

  • Velázquez, J. A., and Coauthors, 2013: An ensemble approach to assess hydrological models’ contribution to uncertainties in the analysis of climate change impact on water resources. Hydrol. Earth Syst. Sci., 17, 565578, doi:10.5194/hess-17-565-2013.

    • Search Google Scholar
    • Export Citation
  • Wallach, D., and B. Goffinet, 1989: Mean squared error of prediction as a criterion for evaluating and comparing system models. Ecol. Modell., 44, 299306, doi:10.1016/0304-3800(89)90035-5.

    • Search Google Scholar
    • Export Citation
  • Wu, J., 2012: Regional Climate Change Simulations and Uncertainty Analysis over CORDEX-East Asia Region (in Chinese). Ph.D. thesis, Chinese Academy of Sciences, 124 pp.

  • Xu, J., Y. Shi, X. Gao, and F. Giorgi, 2013: Projected changes in climate extremes over China in the 21st century from a high resolution regional climate model (RegCM3). Chin. Sci. Bull., 58, 14431452, doi:10.1007/s11434-012-5548-6.

    • Search Google Scholar
    • Export Citation
  • Yuan, B., J. Guo, M. Ye, and J. Zhao, 2012: Variety distribution pattern and climatic potential productivity of spring maize in northeast China under climate change. Chin. Sci. Bull., 57, 34973508, doi:10.1007/s11434-012-5135-x.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., L. Feng, J. Wang, E. L. Wang, and Y. L. Xu, 2013: Using APSIM to explore wheat yield response to climate change in the North China Plain: The predicted adaptation of wheat cultivar types to vernalization. J. Agric. Sci.,151, 836–848, doi:10.1017/S0021859612000883.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1645 847 57
PDF Downloads 666 143 8