Patterns of Diurnal Marine Stratocumulus Cloud Fraction Variability

Casey D. Burleyson North Carolina State University, Raleigh, North Carolina, and Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Casey D. Burleyson in
Current site
Google Scholar
PubMed
Close
and
Sandra E. Yuter North Carolina State University, Raleigh, North Carolina

Search for other papers by Sandra E. Yuter in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The spatial patterns of subtropical marine stratocumulus cloud fraction variability on diurnal time scales are examined using high-temporal-resolution cloud masks that are based on 30-min, 4 km × 4 km geosynchronous infrared data for 2003–10. This dataset permits comparison of the characteristics of variability in low cloud fraction among the three subtropical marine stratocumulus regions in the northeastern (NE) Pacific, southeastern (SE) Pacific, and SE Atlantic Oceans. In all three regions, the largest diurnal cycles and earliest time of cloud breakup occur on the edges of the cloud field where cloud fractions are generally lower. The rate at which the cloud breaks up during the day is tied to the starting cloud fraction at dawn, which determines the amount of longwave cooling that is initially available to offset shortwave radiative fluxes during the day. The maximum rate of cloud breakup occurs near 1200 LT. Cloud fraction begins to increase by 1600 LT (before the sun sets) and reaches its maximum value just before dawn. The diurnal-cycle characteristics of the SE Pacific and SE Atlantic marine stratocumulus cloud decks are more similar to each other than to those in the NE Pacific. The NE Pacific cloud deck has a smaller-amplitude diurnal cycle, slower rates of cloud breakup during the day for a given cloud fraction at dawn, and a higher probability of cloud breakup overnight.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-14-0178.s1.

Corresponding author address: Dr. Casey D. Burleyson, Pacific Northwest National Laboratory, P.O. Box 999/MS K9-24, Richland, WA 99352. E-mail: casey.burleyson@pnnl.gov.

Abstract

The spatial patterns of subtropical marine stratocumulus cloud fraction variability on diurnal time scales are examined using high-temporal-resolution cloud masks that are based on 30-min, 4 km × 4 km geosynchronous infrared data for 2003–10. This dataset permits comparison of the characteristics of variability in low cloud fraction among the three subtropical marine stratocumulus regions in the northeastern (NE) Pacific, southeastern (SE) Pacific, and SE Atlantic Oceans. In all three regions, the largest diurnal cycles and earliest time of cloud breakup occur on the edges of the cloud field where cloud fractions are generally lower. The rate at which the cloud breaks up during the day is tied to the starting cloud fraction at dawn, which determines the amount of longwave cooling that is initially available to offset shortwave radiative fluxes during the day. The maximum rate of cloud breakup occurs near 1200 LT. Cloud fraction begins to increase by 1600 LT (before the sun sets) and reaches its maximum value just before dawn. The diurnal-cycle characteristics of the SE Pacific and SE Atlantic marine stratocumulus cloud decks are more similar to each other than to those in the NE Pacific. The NE Pacific cloud deck has a smaller-amplitude diurnal cycle, slower rates of cloud breakup during the day for a given cloud fraction at dawn, and a higher probability of cloud breakup overnight.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-14-0178.s1.

Corresponding author address: Dr. Casey D. Burleyson, Pacific Northwest National Laboratory, P.O. Box 999/MS K9-24, Richland, WA 99352. E-mail: casey.burleyson@pnnl.gov.
Save
  • Abel, S. J., D. N. Walters, and G. Allen, 2010: Evaluation of stratocumulus cloud precipitation in the Met Office forecast model during VOCALS-REx. Atmos. Chem. Phys., 10, 10 54110 559, doi:10.5194/acp-10-10541-2010.

    • Search Google Scholar
    • Export Citation
  • Ackerman, S. A., K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, 1998: Discriminating clear sky from clouds with MODIS. J. Geophys. Res., 103, 32 14132 157, doi:10.1029/1998JD200032.

    • Search Google Scholar
    • Export Citation
  • Allen, G., and Coauthors, 2013: Gravity-wave-induced perturbations in marine stratocumulus. Quart. J. Roy. Meteor. Soc., 139, 3245, doi:10.1002/qj.1952.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1990: Diurnal variation of California coastal stratocumulus from two days of boundary layer soundings. Tellus, 42A, 302304, doi:10.1034/j.1600-0870.1990.t01-1-00007.x.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and M. C. Wyant, 1997: Moisture transport, lower-tropospheric stability, and decoupling of cloud-topped boundary layers. J. Atmos. Sci., 54, 148167, doi:10.1175/1520-0469(1997)054<0148:MTLTSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., R. Wood, R. C. George, D. Leon, G. Allen, and X. Zheng, 2010: Southeast Pacific stratocumulus clouds, precipitation and boundary layer structure along 20°S during VOCALS-REx. Atmos. Chem. Phys., 10, 10 63910 654, doi:10.5194/acp-10-10639-2010.

    • Search Google Scholar
    • Export Citation
  • Burleyson, C. D., and S. E. Yuter, 2015: Subdiurnal stratocumulus cloud fraction variability and sensitivity to precipitation. J. Climate, 28, 29682985, doi:10.1175/JCLI-D-14-00648.1.

    • Search Google Scholar
    • Export Citation
  • Burleyson, C. D., S. P. de Szoeke, S. E. Yuter, M. Wilbanks, and W. A. Brewer, 2013: Ship-based observations of the diurnal cycle of southeast Pacific marine stratocumulus clouds and precipitation. J. Atmos. Sci., 70, 38763894, doi:10.1175/JAS-D-13-01.1.

    • Search Google Scholar
    • Export Citation
  • Caldwell, P., R. Wood, and C. S. Bretherton, 2005: Mixed-layer budget analysis of the diurnal cycle of entrainment in southeast Pacific stratocumulus. J. Atmos. Sci., 62, 37753791, doi:10.1175/JAS3561.1.

    • Search Google Scholar
    • Export Citation
  • Comstock, K. K., C. S. Bretherton, and S. E. Yuter, 2005: Mesoscale variability and drizzle in southeast Pacific stratocumulus. J. Atmos. Sci., 62, 37923807, doi:10.1175/JAS3567.1.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., C. W. Fairall, D. E. Wolfe, L. Bariteau, and P. Zuidema, 2010: Surface flux observations on the southeastern tropical Pacific Ocean and attribution of SST errors in coupled ocean–atmosphere models. J. Climate, 23, 41524174, doi:10.1175/2010JCLI3411.1.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., S. E. Yuter, D. Mechem, C. W. Fairall, C. D. Burleyson, and P. Zuidema, 2012: Observations of stratocumulus and their effect on the eastern Pacific surface heat budget along 20°S. J. Climate, 25, 85428567, doi:10.1175/JCLI-D-11-00618.1.

    • Search Google Scholar
    • Export Citation
  • Di Girolamo, L., and R. Davies, 1997: Cloud fraction errors caused by finite resolution measurements. J. Geophys. Res., 102, 17391756, doi:10.1029/96JD02663.

    • Search Google Scholar
    • Export Citation
  • Duynkerke, P. G., 1989: The diurnal variation of a marine stratocumulus cloud: A model sensitivity study. Mon. Wea. Rev., 117, 17101725, doi:10.1175/1520-0493(1989)117<1710:TDVOAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eastman, R., and S. G. Warren, 2014: Diurnal cycles of cumulus, cumulonimbus, stratus, stratocumulus, and fog from surface observations over land and water. J. Climate, 27, 23862404, doi:10.1175/JCLI-D-13-00352.1.

    • Search Google Scholar
    • Export Citation
  • Frey, R. A., S. A. Ackerman, Y. Liu, K. I. Strabala, H. Zhang, J. R. Key, and X. Wang, 2008: Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for collection 5. J. Atmos. Oceanic Technol., 25, 10571072, doi:10.1175/2008JTECHA1052.1.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and R. C. Muñoz, 2004: The diurnal cycle in circulation and cloudiness over the subtropical southeast Pacific: A modeling study. J. Climate, 17, 16991710, doi:10.1175/1520-0442(2004)017<1699:TDCICA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., and S. G. Warren, 2007: A gridded climatology of clouds over land (1971–96) and ocean (1954–97) from surface observations worldwide. Oak Ridge National Laboratory Carbon Dioxide Information Analysis Center Numeric Data Product NDP-026-E, 71 pp. [Available online at http://www.atmos.washington.edu/~sgw/PAPERS/2007_ndp026e.pdf.]

  • Holz, R. E., S. A. Ackerman, F. W. Nagle, R. Frey, S. Dutcher, R. E. Keuhn, M. A. Vaughan, and B. Baum, 2008: Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP. J. Geophys. Res., 113, D00A19, doi:10.1029/2008JD009837.

    • Search Google Scholar
    • Export Citation
  • James, D. G., 1959: Observations from aircraft of temperatures and humidities near stratocumulus clouds. Quart. J. Roy. Meteor. Soc., 85, 120130, doi:10.1002/qj.49708536405.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., R. J. Joyce, and Y. Yarosh, 2001: A real-time global half-hourly pixel-resolution infrared dataset and its applications. Bull. Amer. Meteor. Soc., 82, 205217, doi:10.1175/1520-0477(2001)082<0205:ARTGHH>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jones, A. L., L. Di Girolamo, and G. Zhao, 2012: Reducing the resolution bias in cloud fraction from satellite derived clear-conservation masks. J. Geophys. Res., 117, D12201, doi:10.1029/2011JD017195.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., and P. A. Arkin, 1997: Improved estimates of tropical and subtropical precipitation using the GOES precipitation index. J. Atmos. Oceanic Technol., 14, 9971011, doi:10.1175/1520-0426(1997)014<0997:IEOTAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans. Geosci. Remote Sens., 41, 442458, doi:10.1109/TGRS.2002.808226.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, doi:10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., D. L. Hartmann, and J. R. Norris, 1995: On the relationships among low-cloud structure, sea surface temperature, and atmospheric circulations in the summertime northeast Pacific. J. Climate, 8, 11401155, doi:10.1175/1520-0442(1995)008<1140:OTRALC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leon, D. C., Z. Wang, and D. Liu, 2008: Climatology of drizzle in marine boundary layer clouds based on 1 year of data from CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). J. Geophys. Res., 113, D00A14, doi:10.1029/2008JD009835.

    • Search Google Scholar
    • Export Citation
  • Lilly, D., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292309, doi:10.1002/qj.49709440106.

    • Search Google Scholar
    • Export Citation
  • Lovejoy, S., and D. Schertzer, 1990: Fractals, raindrops and resolution dependence of rain measurements. J. Appl. Meteor., 29, 11671170, doi:10.1175/1520-0450(1990)029<1167:FRARDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maddux, B. C., S. A. Ackerman, and S. Platnick, 2010: Viewing geometry dependencies in MODIS cloud products. J. Atmos. Oceanic Technol., 27, 15191528, doi:10.1175/2010JTECHA1432.1.

    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., S. E. Yuter, and S. P. de Szoeke, 2012: Thermodynamic and aerosol controls in southeast Pacific stratocumulus. J. Atmos. Sci., 69, 12501266, doi:10.1175/JAS-D-11-0165.1.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., D. L. Williamson, C. Hannay, and J. G. Olson, 2012: Southeast Pacific stratocumulus in the Community Atmosphere Model. J. Climate, 25, 61756192, doi:10.1175/JCLI-D-11-00503.1.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and E. F. Harrison, 1984: Diurnal variability of regional cloud and clear-sky radiative parameters derived from GOES data. Part I: Analysis method. J. Climate Appl. Meteor., 23, 9931011, doi:10.1175/1520-0450(1984)023<0993:DVORCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., 1984: The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model. Quart. J. Roy. Meteor. Soc., 110, 783820, doi:10.1002/qj.49711046603.

    • Search Google Scholar
    • Export Citation
  • Painemal, D., R. Garreaud, J. Rutllant, and P. Zuidema, 2010: Southeast Pacific stratocumulus: High-frequency variability and mesoscale structures over San Felix Island. J. Appl. Meteor. Climatol., 49, 463477, doi:10.1175/2009JAMC2230.1.

    • Search Google Scholar
    • Export Citation
  • Painemal, D., P. Minnis, and L. O’Neill, 2013: The diurnal cycle of cloud-top height and cloud cover over the southeastern Pacific as observed by GOES-10. J. Atmos. Sci., 70, 23932408, doi:10.1175/JAS-D-12-0325.1.

    • Search Google Scholar
    • Export Citation
  • Painemal, D., K.-M. Xu, A. Cheng, P. Minnis, and R. Palikonda, 2015: Mean structure and diurnal cycle of southeast Atlantic boundary layer clouds: Insights from satellite observations and multiscale modeling framework simulations. J. Climate, 28, 324341, doi:10.1175/JCLI-D-14-00368.1.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., S. Platnick, S. A. Ackerman, R. S. Hemler, and R. J. P. Hofman, 2012: Reconciling simulated and observed views of clouds: MODIS, ISCCP, and the limits of instrument simulators. J. Climate, 25, 46994720, doi:10.1175/JCLI-D-11-00267.1.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473, doi:10.1109/TGRS.2002.808301.

    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., and R. D. Garreaud, 2010: Marine boundary layer over the subtropical southeast Pacific during VOCALS-Rex—Part I: Mean structure and diurnal cycle. Atmos. Chem. Phys., 10, 44914506, doi:10.5194/acp-10-4491-2010.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929948, doi:10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 220, doi:10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and Coauthors, 1985: ISCCP cloud algorithm intercomparison. J. Climate Appl. Meteor., 24, 877903, doi:10.1175/1520-0450(1985)024<0887:ICAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rozendaal, M., C. B. Leovy, and S. A. Klein, 1995: An observational study of diurnal variations of marine stratiform cloud. J. Climate, 8, 17951809, doi:10.1175/1520-0442(1995)008<1795:AOSODV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sandu, I., and B. Stevens, 2011: On the factors modulating the stratocumulus to cumulus transition. J. Atmos. Sci., 68, 18651881, doi:10.1175/2011JAS3614.1.

    • Search Google Scholar
    • Export Citation
  • Saunders, R. W., and K. T. Kriebel, 1988: An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int. J. Remote Sens., 9, 123150, doi:10.1080/01431168808954841.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., and Coauthors, 2013: Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX Radiation Panel. Bull. Amer. Meteor. Soc., 94, 10311049, doi:10.1175/BAMS-D-12-00117.1.

    • Search Google Scholar
    • Export Citation
  • Turton, J. D., and S. Nicholls, 1987: A study of the diurnal variation of stratocumulus using a mixed layer model. Quart. J. Roy. Meteor. Soc., 113, 9691009, doi:10.1002/qj.49711347712.

    • Search Google Scholar
    • Export Citation
  • vanZanten, M. C., and B. Stevens, 2005: Observations of the structure of heavily precipitating marine stratocumulus. J. Atmos. Sci., 62, 43274342, doi:10.1175/JAS3611.1.

    • Search Google Scholar
    • Export Citation
  • Wark, D. Q., G. Yamamoto, and J. H. Lienesch, 1962: Methods of estimating infrared flux and surface temperature from meteorological satellites. J. Atmos. Sci., 19, 369384, doi:10.1175/1520-0469(1962)019<0369:MOEIFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., and L. Parker, 1992: On the determination of cloud cover from satellite sensors: The effect of sensor spatial resolution. J. Geophys. Res., 97, 12 79912 823, doi:10.1029/92JD01061.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and C. S. Bretherton, 2004: Boundary layer depth, entrainment, and decoupling in the cloud-capped subtropical and tropical marine boundary layer. J. Climate, 17, 35763588, doi:10.1175/1520-0442(2004)017<3576:BLDEAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and D. L. Hartmann, 2006: Spatial variability of liquid water path in marine low clouds: The importance of mesoscale cellular convection. J. Climate, 19, 17481764, doi:10.1175/JCLI3702.1.

    • Search Google Scholar
    • Export Citation
  • Wood, R., M. Köhler, R. Bennartz, and C. O’Dell, 2009: The diurnal cycle of surface divergence over the global oceans. Quart. J. Roy. Meteor. Soc., 135, 14841493, doi:10.1002/qj.451.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and Coauthors, 2011a: The VAMOS Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx): Goals, platforms, and field operations. Atmos. Chem. Phys., 11, 627654, doi:10.5194/acp-11-627-2011.

    • Search Google Scholar
    • Export Citation
  • Wood, R., C. S. Bretherton, D. Leon, A. D. Clarke, P. Zuidema, G. Allen, and H. Coe, 2011b: An aircraft case study of the spatial transition from closed to open mesoscale cellular convection over the Southeast Pacific. Atmos. Chem. Phys., 11, 23412370, doi:10.5194/acp-11-2341-2011.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., and Coauthors, 2010: The PreVOCA experiment: Modeling the lower troposphere in the Southeast Pacific. Atmos. Chem. Phys., 10, 47574744, doi:10.5194/acp-10-4757-2010.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., and Coauthors, 2015: Global and regional modeling of clouds and aerosols in the marine boundary layer during VOCALS: The VOCA intercomparison. Atmos. Chem. Phys., 15, 153172, doi:10.5194/acp-15-153-2015.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., and L. Di Girolamo, 2008: Impacts of 3-D radiative effects on satellite cloud detection and their consequences on cloud fraction and aerosol optical depth retrievals. J. Geophys. Res., 113, D04213, doi:10.1029/2007JD009095.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., D. Painemal, S. de Szoeke, and C. Fairall, 2009: Stratocumulus cloud-top height estimates and their climatic implications. J. Climate, 22, 46524666, doi:10.1175/2009JCLI2708.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1844 1374 31
PDF Downloads 382 88 15