Daily Rainfall Detection and Estimation over Land Using Microwave Surface Emissivities

Camille Birman CNRM/GAME, UMR 3589, CNRS/Météo-France, Saint Martin d’Hères, France

Search for other papers by Camille Birman in
Current site
Google Scholar
PubMed
Close
,
Fatima Karbou CNRM/GAME, UMR 3589, CNRS/Météo-France, Saint Martin d’Hères, France

Search for other papers by Fatima Karbou in
Current site
Google Scholar
PubMed
Close
, and
Jean-François Mahfouf CNRM/GAME, UMR 3589, CNRS/Météo-France, Toulouse, France

Search for other papers by Jean-François Mahfouf in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Surface emissivities computed at 89 GHz from AMSU-A, AMSU-B, and SSMI/S instruments are used to detect rain events and to estimate a daily precipitation rate over land surfaces. This new retrieval algorithm, called the emissivity rainfall retrieval (EMIRR) algorithm, is evaluated over France and compared with several other precipitation products. The precipitation detection is performed using temporal changes in daily surface emissivities. A statistical fit, derived from a rainfall analysis product using rain gauge and radar data, is devised to estimate a daily precipitation rate from surface emissivities. Rain retrievals are evaluated over a 1-yr period in 2010 against other precipitation products, including rain gauge measurements. The EMIRR algorithm allows a reasonable detection of rainy events from daily surface emissivities. The number of rainy days and the daily rainfall rates compare well to estimates from other precipitation products. However, the algorithm tends to overestimate low precipitation amounts and to underestimate higher ones, with reduced performances in the presence of snow. Despite such limitations, this new method is very promising and provides a demonstration of the potential use of the 89-GHz surface emissivities to infer relevant information (occurrence and amounts) related to daily precipitation over land surfaces.

Corresponding author address: Camille Birman, CNRM/GAME, UMR 3589, CNRS/Météo-France, 1441 rue de la Piscine, 38400 Saint Martin d’Héres, France. E-mail: camille.birman@meteo.fr

Abstract

Surface emissivities computed at 89 GHz from AMSU-A, AMSU-B, and SSMI/S instruments are used to detect rain events and to estimate a daily precipitation rate over land surfaces. This new retrieval algorithm, called the emissivity rainfall retrieval (EMIRR) algorithm, is evaluated over France and compared with several other precipitation products. The precipitation detection is performed using temporal changes in daily surface emissivities. A statistical fit, derived from a rainfall analysis product using rain gauge and radar data, is devised to estimate a daily precipitation rate from surface emissivities. Rain retrievals are evaluated over a 1-yr period in 2010 against other precipitation products, including rain gauge measurements. The EMIRR algorithm allows a reasonable detection of rainy events from daily surface emissivities. The number of rainy days and the daily rainfall rates compare well to estimates from other precipitation products. However, the algorithm tends to overestimate low precipitation amounts and to underestimate higher ones, with reduced performances in the presence of snow. Despite such limitations, this new method is very promising and provides a demonstration of the potential use of the 89-GHz surface emissivities to infer relevant information (occurrence and amounts) related to daily precipitation over land surfaces.

Corresponding author address: Camille Birman, CNRM/GAME, UMR 3589, CNRS/Météo-France, 1441 rue de la Piscine, 38400 Saint Martin d’Héres, France. E-mail: camille.birman@meteo.fr
Save
  • Adler, R. F., and Coauthors, 2003: The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and G. W. Petty, 2001: The sensitivity of microwave remote sensing observations of precipitation to ice particle size distributions. J. Appl. Meteor., 40, 345364, doi:10.1175/1520-0450(2001)040<0345:TSOMRS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., A. Thoss, A. Dybbroe, and D. B. Michelson, 2002: Precipitation analysis using the Advanced Microwave Sounding Unit in support of nowcasting applications. Meteor. Appl., 9, 177189, doi:10.1017/S1350482702002037.

    • Search Google Scholar
    • Export Citation
  • Brocca, L., T. Moramarco, F. Melone, and W. Wagner, 2013: A new method for rainfall estimation through soil moisture observations. Geophys. Res. Lett., 40, 853–858, doi:10.1002/grl.50173.

    • Search Google Scholar
    • Export Citation
  • Brocca, L., and Coauthors, 2014: Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res., 119, 51285141, doi:10.1002/2014JD021489.

    • Search Google Scholar
    • Export Citation
  • Calvet, J.-C., J.-P. Wigneron, J. P. Walker, F. Karbou, A. Chanzy, and C. Albergel, 2011: Sensitivity of passive microwave observations to soil moisture and vegetation content: L-band to W-band. IEEE Trans. Geosci. Remote Sens., 49, 11901199, doi:10.1109/TGRS.2010.2050488.

    • Search Google Scholar
    • Export Citation
  • Choudhury, B. J., 1993: Reflectivities of selected land surface types at 19 and 37 GHz from SSM/I observations. Remote Sens. Environ., 46, 117, doi:10.1016/0034-4257(93)90028-V.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., C. Freydier, J. F. Geleyn, F. Rabier, and M. Rochas, 1991: The ARPEGE project at Météo-France. Proc. ECMWF Workshop in Numerical Methods in Atmospheric Modelling, Vol. II, Reading, United Kingdom, ECMWF, 193–231.

  • Crow, W. T., G. F. Huffman, R. Bindlish, and T. J. Jackson, 2009: Improving satellite rainfall accumulation estimates using spaceborne soil moisture retrievals. J. Hydrometeor., 10, 199–212, doi:10.1175/2008JHM986.1.

    • Search Google Scholar
    • Export Citation
  • Crow, W. T., M. J. van Den Berg, G. F. Huffman, and T. Pellarin, 2011: Correcting rainfall using satellite-based surface soil moisture retrievals: The Soil Moisture Analysis Rainfall Tool (SMART). Water Resour. Res., 47, W08521, doi:10.1029/2011WR010576.

    • Search Google Scholar
    • Export Citation
  • Defer, E., C. Prigent, F. Aires, J. R. Prado, C. J. Walden, O.-Z. Zanif, J.-P. Chaboureau, and J.-P. Pinty, 2008: Development of precipitation retrievals at millimeter and sub-millimeter wavelength for geostationary satellites. J. Geophys. Res., 113, D0811, doi:10.1029/2007JD008673.

    • Search Google Scholar
    • Export Citation
  • DiTomaso, E., F. Romano, and V. Cuomo, 2009: Rainfall estimation from satellite passive microwave observations in the range 89 GHz to 190 GHz. J. Geophys. Res., 114, D18203, doi:10.1029/2009JD011746.

    • Search Google Scholar
    • Export Citation
  • Eyre, J. R., 1991: A fast radiative transfer model for satellite sounding systems. ECMWF Tech. Memo. 176, 28 pp. [Available online at http://old.ecmwf.int/publications/library/ecpublications/_pdf/tm/001-300/tm176.pdf.]

  • Felde, G. W., and J. D. Pickle, 1995: Retrieval of 91 and 150 GHz Earth surface emissivities. J. Geophys. Res., 100 (D10), 20 85520 866, doi:10.1029/95JD02221.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and G. F. Marks, 1995: The development of SSM/I rain-rate retrieval algorithms using ground-based radar measurements. J. Atmos. Oceanic Technol., 12, 755770, doi:10.1175/1520-0426(1995)012<0755:TDOSRR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Funatsu, B. M., C. Claud, and J.-P. Chaboureau, 2007: Potential of Advanced Microwave Sounding Unit to identify precipitating systems and associated upper-level features in the Mediterranean region: Case studies. J. Geophys. Res., 112, D17113, doi:10.1029/2006JD008297.

    • Search Google Scholar
    • Export Citation
  • Geer, A., and F. Baordo, 2014: Improved scattering radiative transfer for frozen hydrometeors at microwave frequencies. Atmos. Meas. Tech. Discuss., 7, 17491805, doi:10.5194/amtd-7-1749-2014.

    • Search Google Scholar
    • Export Citation
  • Gottardi, F., C. Obled, J. Gailhard, and E. Paquet, 2012: Statistical reanalysis of precipitation fields based on ground network data and weather patterns: Application over French mountains. J. Hydrol., 432–433, 154167, doi:10.1016/j.jhydrol.2012.02.014.

    • Search Google Scholar
    • Export Citation
  • Hilburn, K. A., and F. J. Wentz, 2008: Intercalibrated passive microwave rain products from the Unified Microwave Ocean Retrieval Algorithm (UMORA). J. Appl. Meteor. Climatol., 47, 778794, doi:10.1175/2007JAMC1635.1.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karbou, F., C. Prigent, L. Eymard, and J. Pardo, 2005: Microwave land emissivity calculations using AMSU-A and AMSU-B measurements. IEEE Trans. Geosci. Remote Sens., 43, 948959, doi:10.1109/TGRS.2004.837503.

    • Search Google Scholar
    • Export Citation
  • Karbou, F., E. Gérard, and F. Rabier, 2006: Microwave land emissivity and skin temperature for AMSU-A and -B assimilation over land. Quart. J. Roy. Meteor. Soc., 132, 23332355, doi:10.1256/qj.05.216.

    • Search Google Scholar
    • Export Citation
  • Karbou, F., F. Rabier, and C. Prigent, 2014: The assimilation of observations from the Advanced Microwave Sounding Unit over sea ice in the French global numerical weather prediction system. Mon. Wea. Rev., 142, 125140, doi:10.1175/MWR-D-13-00025.1.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., and V. Levizzani, 2011: Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci., 15, 1109–1116, doi:10.5194/hess-15-1109-2011.

    • Search Google Scholar
    • Export Citation
  • Laurantin, O., 2008: ANTILOPE: Hourly rainfall analysis merging radar and rain gauge data. Proc. Int. Symp. on Weather Radar and Hydrology, Grenoble, France, P2-008.

  • Matricardi, M., F. Chevallier, G. Kelly, and J.-N. Thépaut, 2004: An improved general fast radiative transfer model for the assimilation of radiance observations. Quart. J. Roy. Meteor. Soc., 130, 153173, doi:10.1256/qj.02.181.

    • Search Google Scholar
    • Export Citation
  • Pellarin, T., A. Ali, F. Chopin, I. Jobard, and J.-C. Bergès, 2008: Using spaceborne surface soil moisture to constrain satellite precipitation estimates over West Africa. Geophys. Res. Lett., 35, L02813, doi:10.1029/2007GL032243.

    • Search Google Scholar
    • Export Citation
  • Pellarin, T., S. Louvet, C. Gruhier, G. Quantin, and C. Legout, 2013: A simple and effective method for correcting soil moisture and precipitation estimates using AMSR-E measurements. Remote Sens. Environ., 136, 2836, doi:10.1016/j.rse.2013.04.011.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., and K. Li, 2013: Improved passive microwave retrievals of rain rate over land and ocean. Part II: Validation and intercomparison. J. Atmos. Oceanic Technol., 30, 25092526, doi:10.1175/JTECH-D-12-00184.1.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., W. B. Rossow, and E. Matthews, 1997: Microwave land surface emissivities estimated from SSM/I observations. J. Geophys. Res., 102, 21 86721 890, doi:10.1029/97JD01360.

    • Search Google Scholar
    • Export Citation
  • Saunders, R. W., M. Matricardi, and P. Brunel, 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteor. Soc., 125, 14071425, doi:10.1256/smsqj.55614.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., K. L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, doi:10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273, doi:10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., and Coauthors, 2012: Global precipitation measurement: Methods, datasets and applications. Atmos. Res., 104–105, 7097, doi:10.1016/j.atmosres.2011.10.021.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., Z. S. Haddad, and Y. You, 2014: Principal components of multifrequency microwave land surface emissivities. Part I: Estimation under clear and precipitating conditions. J. Hydrometeor., 15, 319, doi:10.1175/JHM-D-13-08.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1305 996 35
PDF Downloads 189 40 8