Long-Term Comparison of Collocated Instantaneous Rain Retrievals from the TRMM Microwave Imager and Precipitation Radar over the Ocean

Eun-Kyoung Seo Kongju National University, Chungnam, South Korea

Search for other papers by Eun-Kyoung Seo in
Current site
Google Scholar
PubMed
Close
,
Svetla Hristova-Veleva Jet Propulsion Laboratory, California Institute of Technology, Pasadena, and Joint Institute For Regional Earth System Science and Engineering, University of California Los Angeles, Los Angeles, California

Search for other papers by Svetla Hristova-Veleva in
Current site
Google Scholar
PubMed
Close
,
Guosheng Liu Florida State University, Tallahassee, Florida

Search for other papers by Guosheng Liu in
Current site
Google Scholar
PubMed
Close
,
Mi-Lim Ou National Institute of Meteorological Research, Korea Meteorological Administration, Seoul, South Korea

Search for other papers by Mi-Lim Ou in
Current site
Google Scholar
PubMed
Close
, and
Geun-Hyeok Ryu National Institute of Meteorological Research, Korea Meteorological Administration, Seoul, South Korea

Search for other papers by Geun-Hyeok Ryu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Version-7 (V7) rain rates retrieved by the TRMM Microwave Imager (TMI) and Precipitation Radar (PR) are spatially and temporally collocated over the ocean and compared at TMI footprint scale for the summer months of 16 years, within the TRMM coverage belt from 38°S to 38°N latitude. This study puts special emphasis on examining how the estimates from the two instruments compare with each other for different rain types and for different geographical locations. It is found that, although the two rain-rate estimates agree with each other extremely well (only 2.6% difference) when averaged globally and over all rain types, large discrepancies (~60%) are observed if comparisons are conducted for rain pixels of only convective type or for regions where convective rain types dominate. For the stratiform rain type, the TMI and PR retrievals compare well with a difference of ~13% globally. In particular, the partial beam filling seems to be less important to the underestimation of TMI rain against PR rain than the spatial variability of rain. These findings point to the existing need for better understanding of the remote-sensing physics of convective rain. Such an improved understanding is critically important to decreasing the uncertainty in oceanic rainfall estimation from space in the coming GPM era of global long-term observations that will lead to the creation of a climate record of trends in precipitation.

Corresponding author address: Eun-Kyoung Seo, Dept. of Earth Science Education, Kongju National University, 56 GongjuDaehak-Ro, Kongju, Chungnam 314-701, South Korea. E-mail: ekseo@kongju.ac.kr.

Abstract

Version-7 (V7) rain rates retrieved by the TRMM Microwave Imager (TMI) and Precipitation Radar (PR) are spatially and temporally collocated over the ocean and compared at TMI footprint scale for the summer months of 16 years, within the TRMM coverage belt from 38°S to 38°N latitude. This study puts special emphasis on examining how the estimates from the two instruments compare with each other for different rain types and for different geographical locations. It is found that, although the two rain-rate estimates agree with each other extremely well (only 2.6% difference) when averaged globally and over all rain types, large discrepancies (~60%) are observed if comparisons are conducted for rain pixels of only convective type or for regions where convective rain types dominate. For the stratiform rain type, the TMI and PR retrievals compare well with a difference of ~13% globally. In particular, the partial beam filling seems to be less important to the underestimation of TMI rain against PR rain than the spatial variability of rain. These findings point to the existing need for better understanding of the remote-sensing physics of convective rain. Such an improved understanding is critically important to decreasing the uncertainty in oceanic rainfall estimation from space in the coming GPM era of global long-term observations that will lead to the creation of a climate record of trends in precipitation.

Corresponding author address: Eun-Kyoung Seo, Dept. of Earth Science Education, Kongju National University, 56 GongjuDaehak-Ro, Kongju, Chungnam 314-701, South Korea. E-mail: ekseo@kongju.ac.kr.
Save
  • Awaka, J., T. Iguchi, and K. Okamoto, 1998: Early results on rain type classification by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar. Proc. Eighth URSI Commission Open Symp., Aveiro, Portugal, URSI, 2225.

  • Berg, W., C. Kummerow, and C. Morales, 2002: Differences between east and west Pacific rainfall systems. J. Climate, 15, 36593672, doi:10.1175/1520-0442(2002)015<3659:DBEAWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berg, W., T. L’Ecuyer, and C. Kummerow, 2006: Rainfall climate regimes: The relationship of regional TRMM rainfall biases to the environment. J. Appl. Meteor. Climatol., 45, 434454, doi:10.1175/JAM2331.1.

    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., 2005: Comparison of TRMM precipitation retrievals with rain gauge data from ocean buoys. J. Climate, 18, 178190, doi:10.1175/JCLI3259.1.

    • Search Google Scholar
    • Export Citation
  • Gopalan, K., N.-Y. Wang, R. Ferraro, and C. Liu, 2010: Status of the TRMM 2A12 land precipitation algorithm. J. Atmos. Oceanic Technol., 27, 13431354, doi:10.1175/2010JTECHA1454.1.

    • Search Google Scholar
    • Export Citation
  • Hristova-Veleva, S. M., and Coauthors, 2013: Revealing the winds under the rain. Part I: Passive microwave rain retrievals using a new observation-based parameterization of subsatellite rain variability and intensity—Algorithm description. J. Appl. Meteor. Climatol., 52, 28282848, doi:10.1175/JAMC-D-12-0237.1.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., and R. Meneghini, 1994: Intercomparison of single-frequency methods for retrieving a vertical rain profile from airborne of spaceborne radar data. J. Atmos. Oceanic Technol., 11, 15071516, doi:10.1175/1520-0426(1994)011<1507:IOSFMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 19651982, doi:10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from microwave sensors. J. Appl. Meteor., 40, 18011820, doi:10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., S. Ringerud, J. Crook, D. Randel, and W. Berg, 2011: An observationally generated a priori database for microwave rainfall retrievals. J. Atmos. Oceanic Technol., 28, 113130, doi:10.1175/2010JTECHA1468.1.

    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., W. B. Rossow, R. L. Guedes, and A. W. Walker, 1998: Life cycle variations of mesoscale convective systems over the Americas. Mon. Wea. Rev., 126, 16301654, doi:10.1175/1520-0493(1998)126<1630:LCVOMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and C. D. Kummerow, 2004: An examination of version 5 rainfall estimates from the TRMM Microwave Imager, Precipitation Radar, and rain gauges on global, regional and storm scales. J. Appl. Meteor., 43, 10161036, doi:10.1175/1520-0450(2004)043<1016:AEOVRE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., R. Cifelli, and S. A. Rutledge, 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134, 27022721, doi:10.1175/MWR3200.1.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., and Coauthors, 2006: Precipitation and latent heating distributions from satellite passive microwave radiometry. Part I: Improved method and uncertainties. J. Appl. Meteor. Climatol., 45, 702720, doi:10.1175/JAM2369.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2003: Stratiform rain in the tropics as seen by the TRMM Precipitation Radar. J. Climate, 16, 17391756, doi:10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seo, E.-K., 2011: Characteristics of summer rainfall over East Asia as observed by TRMM PR. Korean Earth Sci. Soc., 32, 3345, doi:10.5467/JKESS.2011.32.1.33.

    • Search Google Scholar
    • Export Citation
  • Seo, E.-K., G. Liu, and K.-Y. Kim, 2007a: A note on systematic errors in a Bayesian retrieval algorithm. J. Meteor. Soc. Japan, 85, 6974, doi:10.2151/jmsj.85.69.

    • Search Google Scholar
    • Export Citation
  • Seo, E.-K., B.-J. Sohn, and G. Liu, 2007b: How TRMM Precipitation Radar and Microwave Imager retrieved rain rates differ. Geophys. Res. Lett.,34, L24803, doi:10.1029/2007GL032331.

  • Seto, S., T. Iguchi, and R. Meneghini, 2011: Comparison of TRMM PR V6 and V7 focusing heavy rainfall. Proc. Int. Geoscience and Remote Sensing Symp. (IGARSS), Vancouver, BC, Canada, IEEE, 2582–2585, doi:10.1109/IGARSS.2011.6049769.

  • Shige, S., H. Sasaki, K. Okamoto, and T. Iguchi, 2006: Validation of rainfall estimates from TRMM Precipitation Radar and Microwave Imager using a radiative transfer model: 1. Comparison of the V5 and V6 products. Geophys. Res. Lett., 33, L13803, doi:10.1029/2006GL026350.

    • Search Google Scholar
    • Export Citation
  • Shige, S., T. Watanabe, H. Sasaki, T. Kubota, S. Kida, and K. Okamoto, 2008: Validation of western and eastern Pacific rainfall estimates from the TRMM PR using a radiative transfer model. J. Geophys. Res.,113, D15116, doi:10.1029/2007JD009002.

  • Simpson, J., R. F. Adler, and F. R. North, 1988: A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69, 278295, doi:10.1175/1520-0477(1988)069<0278:APTRMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and C. D. Kummerow, 2007: The remote sensing of clouds and precipitation from space: A review. J. Atmos. Sci., 64, 37423765, doi:10.1175/2006JAS2375.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J.-J., R. F. Adler, G. J. Huffman, D. T. Bolvin, and G. Gu, 2014: An updated TRMM composite climatology of tropical rainfall and its validation. J. Climate, 27, 273284, doi:10.1175/JCLI-D-13-00331.1.

    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., and B. L. Fisher, 2008: Comparisons of instantaneous TRMM ground validation and satellite rain-rate estimates at different spatial scales. J. Appl. Meteor. Climatol., 47, 22152237, doi:10.1175/2008JAMC1875.1.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., J. Stout, R. Wood, J. Kwiatkowski, and D. Horn, 2005: Relative errors in TRMM satellite version 5 and version 6 products: Steps forward and backward. 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., 5R.7. [Available online at https://ams.confex.com/ams/32Rad11Meso/techprogram/paper_96826.htm.]

  • Yuter, S. E., M. Miller, J. Stout, R. Wood, J. Kwiatkowski, D. Horn, and C. Spooner, 2006: Remaining challenges in satellite precipitation estimation using the Tropical Rainfall Measuring Mission. Proc. Fourth European Conf. on Radar Meteorology and Hydrology, Barcelona, Spain, ERAD, 4 pp. [Available online at http://www4.ncsu.edu/~seyuter/pdfs/ERAD06TRMM00163.pdf.]

  • Zagrodnik, J. P., and H. Jiang, 2013: Comparison of TRMM Precipitation Radar and Microwave Imager rainfall retrievals in tropical cyclone inner cores and rainbands. J. Geophys. Res. Atmos., 118, 2942, doi:10.1029/2012JD017919.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 756 477 27
PDF Downloads 163 38 3