A Comparison between Simulated and Observed Surface Energy Balance at the Svalbard Archipelago

Kjetil Schanke Aas Department of Geosciences, University of Oslo, Oslo, Norway

Search for other papers by Kjetil Schanke Aas in
Current site
Google Scholar
PubMed
Close
,
Terje Koren Berntsen Department of Geosciences, University of Oslo, Oslo, Norway

Search for other papers by Terje Koren Berntsen in
Current site
Google Scholar
PubMed
Close
,
Julia Boike Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany

Search for other papers by Julia Boike in
Current site
Google Scholar
PubMed
Close
,
Bernd Etzelmüller Department of Geosciences, University of Oslo, Oslo, Norway

Search for other papers by Bernd Etzelmüller in
Current site
Google Scholar
PubMed
Close
,
Jón Egill Kristjánsson Department of Geosciences, University of Oslo, Oslo, Norway

Search for other papers by Jón Egill Kristjánsson in
Current site
Google Scholar
PubMed
Close
,
Marion Maturilli Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany

Search for other papers by Marion Maturilli in
Current site
Google Scholar
PubMed
Close
,
Thomas Vikhamar Schuler Department of Geosciences, University of Oslo, Oslo, Norway

Search for other papers by Thomas Vikhamar Schuler in
Current site
Google Scholar
PubMed
Close
,
Frode Stordal Department of Geosciences, University of Oslo, Oslo, Norway

Search for other papers by Frode Stordal in
Current site
Google Scholar
PubMed
Close
, and
Sebastian Westermann Department of Geosciences, University of Oslo, Oslo, Norway

Search for other papers by Sebastian Westermann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The surface energy balance at the Svalbard Archipelago has been simulated at high resolution with the Weather Research and Forecasting Model and compared with measurements of the individual energy fluxes from a tundra site near Ny-Ålesund (located north of Norway), as well as other near-surface measurements across the region. For surface air temperature, a good agreement between model and observations was found at all locations. High correlations were also found for daily averaged surface energy fluxes within the different seasons at the main site. The four radiation components showed correlations above 0.5 in all seasons (mostly above 0.9), whereas correlations between 0.3 and 0.8 were found for the sensible and latent heat fluxes. Underestimation of cloud cover and cloud optical thickness led to seasonal biases in incoming shortwave and longwave radiation of up to 30%. During summer, this was mainly a result of distinct days on which the model erroneously simulated cloud-free conditions, whereas the incoming radiation biases appeared to be more related to underestimation of cloud optical thickness during winter. The model overestimated both sensible and latent heat fluxes in most seasons. The model also initially overestimated the average Bowen ratio during summer by a factor of 6, but this bias was greatly reduced with two physically based model modifications that are related to frozen-ground hydrology. The seasonally averaged ground/snow heat flux was mostly in agreement with observations but showed too little short-time variability in the presence of thick snow. Overall, the model reproduced average temperatures well but overestimated diurnal cycles and showed considerable biases in the individual energy fluxes on seasonal and shorter time scales.

Denotes Open Access content.

Corresponding author address: Kjetil Schanke Aas, Dept. of Geosciences, University of Oslo, P.O. Box 1022, Blindern, N-0315 Oslo, Norway. E-mail: k.s.aas@geo.uio.no

Abstract

The surface energy balance at the Svalbard Archipelago has been simulated at high resolution with the Weather Research and Forecasting Model and compared with measurements of the individual energy fluxes from a tundra site near Ny-Ålesund (located north of Norway), as well as other near-surface measurements across the region. For surface air temperature, a good agreement between model and observations was found at all locations. High correlations were also found for daily averaged surface energy fluxes within the different seasons at the main site. The four radiation components showed correlations above 0.5 in all seasons (mostly above 0.9), whereas correlations between 0.3 and 0.8 were found for the sensible and latent heat fluxes. Underestimation of cloud cover and cloud optical thickness led to seasonal biases in incoming shortwave and longwave radiation of up to 30%. During summer, this was mainly a result of distinct days on which the model erroneously simulated cloud-free conditions, whereas the incoming radiation biases appeared to be more related to underestimation of cloud optical thickness during winter. The model overestimated both sensible and latent heat fluxes in most seasons. The model also initially overestimated the average Bowen ratio during summer by a factor of 6, but this bias was greatly reduced with two physically based model modifications that are related to frozen-ground hydrology. The seasonally averaged ground/snow heat flux was mostly in agreement with observations but showed too little short-time variability in the presence of thick snow. Overall, the model reproduced average temperatures well but overestimated diurnal cycles and showed considerable biases in the individual energy fluxes on seasonal and shorter time scales.

Denotes Open Access content.

Corresponding author address: Kjetil Schanke Aas, Dept. of Geosciences, University of Oslo, P.O. Box 1022, Blindern, N-0315 Oslo, Norway. E-mail: k.s.aas@geo.uio.no
Save
  • ACIA, 2005: Arctic Climate Impact Assessment. Cambridge University Press, 1042 pp. [Available online at http://www.acia.uaf.edu/pages/scientific.html.]

  • Boike, J., K. Roth, and O. Ippisch, 2003: Seasonal snow cover on frozen ground: Energy balance calculations of a permafrost site near Ny-Ålesund, Spitsbergen. J. Geophys. Res. Atmos., 108, 8163, doi:10.1029/2001JD000939.

    • Search Google Scholar
    • Export Citation
  • Boike, J., O. Ippisch, P. P. Overduin, B. Hagedom, and K. Roth, 2007: Water, heat and solute dynamics of a mud boil, Spitsbergen. Geomorphology, 95, 6173, doi:10.1016/j.geomorph.2006.07.033.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., K. M. Hines, and L.-S. Bai, 2009: Development and testing of Polar Weather Research and Forecasting Model: 2. Arctic Ocean. J. Geophys. Res., 114, D08122, doi:10.1029/2008JD010300.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., and Coauthors, 2012: Very high resolution Arctic system reanalysis for 2000-2011. Presentation, Fourth World Climate Research Programme Int. Conf. on Reanalyses, Silver Spring, MD, WCRP. [Available online at http://polarmet.osu.edu/ASR/asr_bromwich_ICR4_2012.pdf.]

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Y. Zhang, 2009: On the coupling strength between the land surface and the atmosphere: From viewpoint of surface exchange coefficients. Geophys. Res. Lett., 36, L10404, doi:10.1029/2009GL037980.

    • Search Google Scholar
    • Export Citation
  • Chen, F., Z. Janjić, and K. Mitchell, 1997: Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta Model. Bound.-Layer Meteor., 85, 391421, doi:10.1023/A:1000531001463.

    • Search Google Scholar
    • Export Citation
  • Chernokulsky, A., and I. I. Mokhov, 2012: Climatology of total cloudiness in the Arctic: An intercomparison of observations and reanalyses. Adv. Meteor., 2012, 542093, doi:10.1155/2012/542093.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1999: Technical report series on global modeling and data assimilation, Volume 15: A solar radiation parameterization for atmospheric studies. NASA Tech. Rep. NASA/TM-1999-10460, Vol. 15, 51 pp. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19990060930.pdf.]

  • Chylek, P., C. K. Folland, G. Lesins, M. K. Dubey, and M. Y. Wang, 2009: Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation. Geophys. Res. Lett., 36, L14801, doi:10.1029/2009GL038777.

    • Search Google Scholar
    • Export Citation
  • Claremar, B., F. Obleitner, C. Reijmer, V. Pohjola, A. Waxegard, F. Karner, and A. Rutgersson, 2012: Applying a mesoscale atmospheric model to Svalbard glaciers. Adv. Meteor., 2012, 321649, doi:10.1155/2012/321649.

    • Search Google Scholar
    • Export Citation
  • Collier, E., T. Molg, F. Maussion, D. Scherer, C. Mayer, and A. B. G. Bush, 2013: High-resolution interactive modelling of the mountain glacier–atmosphere interface: An application over the Karakoram. Cryosphere, 7, 779795, doi:10.5194/tc-7-779-2013.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., and Coauthors, 2006: Single-column model intercomparison for a stably stratified atmospheric boundary layer. Bound.-Layer Meteor., 118, 273303, doi:10.1007/s10546-005-3780-1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler, and W. Wimmer, 2012: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ., 116, 140158, doi:10.1016/j.rse.2010.10.017.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational Mesoscale Eta Model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Foken, T., 2008: The energy balance closure problem: An overview. Ecol. Appl., 18, 13511367, doi:10.1890/06-0922.1.

  • Gisnås, K., S. Westermann, T. V. Schuler, T. Litherland, K. Isaksen, J. Boike, and B. Etzelmüller, 2014: A statistical approach to represent small-scale variability of permafrost temperatures due to snow cover. Cryosphere Discuss., 8, 509536, doi:10.5194/tcd-8-509-2014.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 14, doi:10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Hines, K. M., and D. H. Bromwich, 2008: Development and testing of Polar Weather Research and Forecasting (WRF) Model. Part I: Greenland ice sheet meteorology. Mon. Wea. Rev., 136, 19711989, doi:10.1175/2007MWR2112.1.

    • Search Google Scholar
    • Export Citation
  • Hines, K. M., D. H. Bromwich, L.-S. Bai, M. Barlage, and A. G. Slater, 2011: Development and testing of Polar WRF. Part III: Arctic land. J. Climate, 24, 2648, doi:10.1175/2010JCLI3460.1.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., 2006: Preface: GEWEX atmospheric boundary-layer study (GABLS) on stable boundary layers. Bound.-Layer Meteor., 118, 243246, doi:10.1007/s10546-005-9008-6.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., G. Svensson, S. Basu, B. Beare, F. C. Bosveld, and J. Cuxart, 2012: Overview of the GEWEX Atmospheric Boundary Layer Study (GABLS). Proc. ECMWF Workshop on Diurnal Cycles and the Stable Boundary Layer, Reading, United Kingdom, ECMWF/WCRP, 1123. [Available online at http://old.ecmwf.int/publications/library/ecpublications/_pdf/workshop/2011/GABLS/Holtslag.pdf.]

  • Holtslag, A. A. M., and Coauthors, 2013: Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models. Bull. Amer. Meteor. Soc., 94, 16911706, doi:10.1175/BAMS-D-11-00187.1.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., M. D. Shupe, T. Uttal, and B. J. McCarty, 2002: An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. J. Geophys. Res., 107, 8030, doi:10.1029/2000JC000423.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.]

  • Kilpeläinen, T., T. Vihma, and H. Olafsson, 2011: Modelling of spatial variability and topographic effects over Arctic fjords in Svalbard. Tellus, 63A, 223237, doi:10.1111/j.1600-0870.2010.00481.x.

    • Search Google Scholar
    • Export Citation
  • Kilpeläinen, T., T. Vihma, M. Manninen, A. Sjoblom, E. Jakobson, T. Palo, and M. Maturilli, 2012: Modelling the vertical structure of the atmospheric boundary layer over Arctic fjords in Svalbard. Quart. J. Roy. Meteor. Soc., 138, 18671883, doi:10.1002/qj.1914.

    • Search Google Scholar
    • Export Citation
  • Koren, V., J. Schaake, K. Mitchell, Q. Y. Duan, F. Chen, and J. M. Baker, 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104, 19 56919 585, doi:10.1029/1999JD900232.

    • Search Google Scholar
    • Export Citation
  • Langer, M., S. Westermann, S. Muster, K. Piel, and J. Boike, 2011a: The surface energy balance of a polygonal tundra site in northern Siberia—Part 1: Spring to fall. Cryosphere, 5, 151171, doi:10.5194/tc-5-151-2011.

    • Search Google Scholar
    • Export Citation
  • Langer, M., S. Westermann, S. Muster, K. Piel, and J. Boike, 2011b: The surface energy balance of a polygonal tundra site in northern Siberia—Part 2: Winter. Cryosphere, 5, 509524, doi:10.5194/tc-5-509-2011.

    • Search Google Scholar
    • Export Citation
  • Livneh, B., Y. Xia, K. E. Mitchell, M. B. Ek, and D. P. Lettenmaier, 2010: Noah LSM snow model diagnostics and enhancements. J. Hydrometeor., 11, 721738, doi:10.1175/2009JHM1174.1.

    • Search Google Scholar
    • Export Citation
  • Lloyd, C. R., R. J. Harding, T. Friborg, and M. Aurela, 2001: Surface fluxes of heat and water vapour from sites in the European Arctic. Theor. Appl. Climatol., 70, 1933, doi:10.1007/s007040170003.

    • Search Google Scholar
    • Export Citation
  • Lüers, J., and J. Bareiss, 2010: The effect of misleading surface temperature estimations on the sensible heat fluxes at a high Arctic site—The Arctic Turbulence Experiment 2006 on Svalbard (ARCTEX-2006). Atmos. Chem. Phys., 10, 157168, doi:10.5194/acp-10-157-2010.

    • Search Google Scholar
    • Export Citation
  • Lüers, J., S. Westermann, K. Piel, and J. Boike, 2014: Annual CO2 budget and seasonal CO2 exchange signals at a high Arctic permafrost site on Spitsbergen, Svalbard archipelago. Biogeosci. Discuss., 11, 15351559, doi:10.5194/bgd-11-1535-2014.

    • Search Google Scholar
    • Export Citation
  • Makiranta, E., T. Vihma, A. Sjoblom, and E.-M. Tastula, 2011: Observations and modelling of the atmospheric boundary layer over sea-ice in a Svalbard fjord. Bound.-Layer Meteor., 140, 105123, doi:10.1007/s10546-011-9609-1.

    • Search Google Scholar
    • Export Citation
  • Maturilli, M., 2009: Radiosonde measurements from station Ny-Ålesund (2008-07). Alfred Wegener Institute for Polar and Marine Research–Research Unit Potsdam, accessed 29 May 2013, doi:10.1594/PANGAEA.716709.

  • Maturilli, M., 2011: Expanded measurements from station Ny-Ålesund (2008-03). Alfred Wegener Institute for Polar and Marine Research–Research Unit Potsdam, accessed 29 May 2013, doi:10.1594/PANGAEA.760860.

  • Mayer, S., M. O. Jonassen, A. Sandvik, and J. Reuder, 2012: Profiling the Arctic stable boundary layer in Advent Valley, Svalbard: Measurements and simulations. Bound.-Layer Meteor., 143, 507526, doi:10.1007/s10546-012-9709-6.

    • Search Google Scholar
    • Export Citation
  • McGuire, A. D., and Coauthors, 2009: Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr., 79, 523555, doi:10.1890/08-2025.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, doi:10.1175/JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and Coauthors, 2009: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. II: Multilayer cloud. Quart. J. Roy. Meteor. Soc., 135, 10031019, doi:10.1002/qj.415.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. de Boer, G. Feingold, J. Harrington, M. D. Shupe, and K. Sulia, 2012: Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci., 5, 1117, doi:10.1038/ngeo1332.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, doi:10.1029/2010JD015139.

    • Search Google Scholar
    • Export Citation
  • Nuth, C., J. Kohler, M. König, A. von Deschwanden, J. O. Hagen, A. Kääb, G. Moholdt, and R. Pettersson, 2013: Decadal changes from a multi-temporal glacier inventory of Svalbard. Cryosphere, 7, 16031621, doi:10.5194/tc-7-1603-2013.

    • Search Google Scholar
    • Export Citation
  • Ohmura, A., and Coauthors, 1998: Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate research. Bull. Amer. Meteor. Soc., 79, 21152136, doi:10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roth, K., and J. Boike, 2001: Quantifying the thermal dynamics of a permafrost site near Ny-Ålesund, Svalbard. Water Resour. Res., 37, 29012914, doi:10.1029/2000WR000163.

    • Search Google Scholar
    • Export Citation
  • Schuler, T. V., T. Dunse, T. I. Østby, and J. O. Hagen, 2014: Meteorological conditions on an Arctic ice cap—8 years of automatic weather station data from Austfonna, Svalbard. Int. J. Climatol., 34, 20472058, doi:10.1002/joc.3821.

    • Search Google Scholar
    • Export Citation
  • Sedlar, J., and M. Tjernström, 2009: Stratiform cloud–inversion characterization during the Arctic melt season. Bound.-Layer Meteor., 132, 455474, doi:10.1007/s10546-009-9407-1.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change, 77, 8596, doi:10.1016/j.gloplacha.2011.03.004.

    • Search Google Scholar
    • Export Citation
  • Sjöblom, A., 2014: Turbulent fluxes of momentum and heat over land in the high-Arctic summer: The influence of observation techniques. Polar Res., 33, 21567, doi:10.3402/polar.v33.21567.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Steeneveld, G. J., B. J. H. van de Wiel, and A. A. M. Holtslag, 2006: Modeling the evolution of the atmospheric boundary layer coupled to the land surface for three contrasting nights in CASES-99. J. Atmos. Sci., 63, 920935, doi:10.1175/JAS3654.1.

    • Search Google Scholar
    • Export Citation
  • Sterk, H. A. M., G. J. Steeneveld, and A. A. M. Holtslag, 2013: The role of snow-surface coupling, radiation, and turbulent mixing in modeling a stable boundary layer over Arctic sea ice. J. Geophys. Res., 118, 11991217, doi:10.1002/jgrd.50158.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and Coauthors, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • Taylor, P. C., M. Cai, A. X. Hu, J. Meehl, W. Washington, and G. J. Zhang, 2013: A decomposition of feedback contributions to polar warming amplification. J. Climate, 26, 70237043, doi:10.1175/JCLI-D-12-00696.1.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., W. L. Chapman, and D. H. Portis, 2009: Arctic cloud fraction and radiative fluxes in atmospheric reanalyses. J. Climate, 22, 23162334, doi:10.1175/2008JCLI2213.1.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., C. J. Hahn, J. London, R. M. Chervin, and R. L. Jenne, 1988: Global distribution of total cloud cover and cloud type amounts over the ocean. NCAR Tech. Note NCAR/TN-317+STR, 42 pp., doi:10.5065/D6QC01D1.

  • Weismüller, J., U. Wollschlaeger, J. Boike, X. Pan, Q. Yu, and K. Roth, 2011: Modeling the thermal dynamics of the active layer at two contrasting permafrost sites on Svalbard and on the Tibetan Plateau. Cryosphere, 5, 741757, doi:10.5194/tc-5-741-2011.

    • Search Google Scholar
    • Export Citation
  • Westermann, S., J. Luers, M. Langer, K. Piel, and J. Boike, 2009: The annual surface energy budget of a high-Arctic permafrost site on Svalbard, Norway. Cryosphere, 3, 245263, doi:10.5194/tc-3-245-2009.

    • Search Google Scholar
    • Export Citation
  • Westermann, S., U. Wollschläger, and J. Boike, 2010: Monitoring of active layer dynamics at a permafrost site on Svalbard using multi-channel ground-penetrating radar. Cryosphere, 4, 475487, doi:10.5194/tc-4-475-2010.

    • Search Google Scholar
    • Export Citation
  • Westermann, S., J. Boike, M. Langer, T. V. Schuler, and B. Etzelmueller, 2011: Modeling the impact of wintertime rain events on the thermal regime of permafrost. Cryosphere, 5, 945959, doi:10.5194/tc-5-945-2011.

    • Search Google Scholar
    • Export Citation
  • Winther, J. G., S. Gerland, J. B. Orbaek, B. Ivanov, A. Blanco, and J. Boike, 1999: Spectral reflectance of melting snow in a high Arctic watershed on Svalbard: Some implications for optical satellite remote sensing studies. Hydrol. Processes, 13, 20332049, doi:10.1002/(SICI)1099-1085(199909)13:12/13<2033::AID-HYP892>3.0.CO;2-M.

    • Search Google Scholar
    • Export Citation
  • Winther, J. G., F. Godtliebsen, S. Gerland, and P. E. Isachsen, 2002: Surface albedo in Ny-Ålesund, Svalbard: Variability and trends during 1981–1997. Global Planet. Change, 32, 127139, doi:10.1016/S0921-8181(01)00103-5.

    • Search Google Scholar
    • Export Citation
  • Zib, B. J., X. Q. Dong, B. K. Xi, and A. Kennedy, 2012: Evaluation and intercomparison of cloud fraction and radiative fluxes in recent reanalyses over the Arctic using BSRN surface observations. J. Climate, 25, 22912305, doi:10.1175/JCLI-D-11-00147.1.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S., 1995: Non-local turbulent transport: Pollution dispersion aspects of coherent structure of convective flows. Air Pollution Theory and Simulation, H. Power et al., Eds., Vol. 1, Air Pollution III, Computational Mechanics Publications, 53–60.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1898 1525 40
PDF Downloads 310 77 4