Searching for Large Raindrops: A Global Summary of Two-Dimensional Video Disdrometer Observations

Patrick N. Gatlin NASA Marshall Space Flight Center, Huntsville, Alabama

Search for other papers by Patrick N. Gatlin in
Current site
Google Scholar
PubMed
Close
,
Merhala Thurai Colorado State University, Fort Collins, Colorado

Search for other papers by Merhala Thurai in
Current site
Google Scholar
PubMed
Close
,
V. N. Bringi Colorado State University, Fort Collins, Colorado

Search for other papers by V. N. Bringi in
Current site
Google Scholar
PubMed
Close
,
Walter Petersen NASA Goddard Space Flight Center, Wallops Flight Facility, Wallops Island, Virginia

Search for other papers by Walter Petersen in
Current site
Google Scholar
PubMed
Close
,
David Wolff NASA Goddard Space Flight Center, Wallops Flight Facility, Wallops Island, Virginia

Search for other papers by David Wolff in
Current site
Google Scholar
PubMed
Close
,
Ali Tokay Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, and NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Ali Tokay in
Current site
Google Scholar
PubMed
Close
,
Lawrence Carey University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Lawrence Carey in
Current site
Google Scholar
PubMed
Close
, and
Matthew Wingo University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Matthew Wingo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A dataset containing 9637 h of two-dimensional video disdrometer observations consisting of more than 240 million raindrops measured at diverse climatological locations was compiled to help characterize underlying drop size distribution (DSD) assumptions that are essential to make precise retrievals of rainfall using remote sensing platforms. This study concentrates on the tail of the DSD, which largely impacts rainfall retrieval algorithms that utilize radar reflectivity. The maximum raindrop diameter was a median factor of 1.8 larger than the mass-weighted mean diameter and increased with rainfall rate. Only 0.4% of the 1-min DSD spectra were found to contain large raindrops exceeding 5 mm in diameter. Large raindrops were most abundant at the tropical locations, especially in Puerto Rico, and were largely concentrated during the spring, especially at subtropical locations. Giant raindrops exceeding 8 mm in diameter occurred at tropical, subtropical, and high-latitude continental locations. The greatest numbers of giant raindrops were found in the subtropical locations, with the largest being a 9.7-mm raindrop that occurred in northern Oklahoma during the passage of a hail-producing thunderstorm. These results suggest large raindrops are more likely to fall from clouds that contain hail, especially those raindrops exceeding 8 mm in diameter.

Corresponding author address: Patrick N. Gatlin, NASA/MSFC ZP11, 320 Sparkman Drive, Huntsville, AL 35805. E-mail: patrick.gatlin@nasa.gov

Abstract

A dataset containing 9637 h of two-dimensional video disdrometer observations consisting of more than 240 million raindrops measured at diverse climatological locations was compiled to help characterize underlying drop size distribution (DSD) assumptions that are essential to make precise retrievals of rainfall using remote sensing platforms. This study concentrates on the tail of the DSD, which largely impacts rainfall retrieval algorithms that utilize radar reflectivity. The maximum raindrop diameter was a median factor of 1.8 larger than the mass-weighted mean diameter and increased with rainfall rate. Only 0.4% of the 1-min DSD spectra were found to contain large raindrops exceeding 5 mm in diameter. Large raindrops were most abundant at the tropical locations, especially in Puerto Rico, and were largely concentrated during the spring, especially at subtropical locations. Giant raindrops exceeding 8 mm in diameter occurred at tropical, subtropical, and high-latitude continental locations. The greatest numbers of giant raindrops were found in the subtropical locations, with the largest being a 9.7-mm raindrop that occurred in northern Oklahoma during the passage of a hail-producing thunderstorm. These results suggest large raindrops are more likely to fall from clouds that contain hail, especially those raindrops exceeding 8 mm in diameter.

Corresponding author address: Patrick N. Gatlin, NASA/MSFC ZP11, 320 Sparkman Drive, Huntsville, AL 35805. E-mail: patrick.gatlin@nasa.gov
Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., and C. W. Ulbrich, 1977: Path- and area-integrated rainfall measurement by microwave attenuation in the 1–3 cm band. J. Appl. Meteor., 16, 13221331, doi:10.1175/1520-0450(1977)016<1322:PAAIRM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., R. C. Srivastava, and R. S. Sekkon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys., 11, 135, doi:10.1029/RG011i001p00001.

    • Search Google Scholar
    • Export Citation
  • Aydin, K., T. A. Seliga, and V. Balaji, 1986: Remote sensing of hail with a dual-linear polarization radar. J. Climate Appl. Meteor., 25, 14751484, doi:10.1175/1520-0450(1986)025<1475:RSOHWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Balakrishnan, N., D. S. Zrnić, J. Goldhirsh, and J. Rowland, 1989: Comparison of simulated rain rates from disdrometer data employing polarimetric radar algorithms. J. Atmos. Oceanic Technol., 6, 476486, doi:10.1175/1520-0426(1989)006<0476:COSRRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnes, G., 2001: Severe local storms in the tropics. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 359–432.

  • Baumgardner, D., and A. Colpitt, 1995: Monster drops and rain gushes: Unusual precipitation phenomena in Florida marine cumulus. Preprints, Conf. on Cloud Physics, Dallas, TX, Amer. Meteor. Soc., 344–349.

  • Beard, G., P. R. Chappell, C. Ganter, G. M. Griffiths, C. P. Guard, M. A. Lander, and S. Tobin, 2013: [Regional Climate] Oceania [in “State of the Climate in 2012”]. Bull. Amer. Meteor. Soc.,94 (8), S192–S197.

  • Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33, 851864, doi:10.1175/1520-0469(1976)033<0851:TVASOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1985: Simple altitude adjustments to raindrop velocities for Doppler radar analysis. J. Atmos. Oceanic Technol., 2, 468471, doi:10.1175/1520-0426(1985)002<0468:SAATRV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., and C. Chuang, 1987: A new model for the equilibrium shape of raindrops. J. Atmos. Sci., 44, 15091524, doi:10.1175/1520-0469(1987)044<1509:ANMFTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., D. B. Johnson, and D. Baumgardner, 1986: Aircraft observations of large raindrops in warm, shallow, convective clouds. Geophys. Res. Lett., 13, 991994, doi:10.1029/GL013i010p00991.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., S. E. Yuter, C. D. Burleyson, and A. H. Sobel, 2012: Very high resolution rainfall patterns measured by TRMM precipitation radar: Seasonal and diurnal cycles. Climate Dyn., 39, 239258, doi:10.1007/s00382-011-1146-6.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674685, doi:10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2003: An evaluation of a drop distribution–based polarimetric radar rainfall estimator. J. Appl. Meteor., 42, 652660, doi:10.1175/1520-0450(2003)042<0652:AEOADD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarization Doppler Weather Radar.Cambridge University Press, 636 pp.

  • Bringi, V. N., D. A. Burrows, and S. M. Menon, 1991: Multiparameter radar and aircraft study of raindrop spectral evolution in warm-based clouds. J. Appl. Meteor., 30, 853880, doi:10.1175/1520-0450(1991)030<0853:MRAASO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., G. Huang, V. Chandrasekar, and E. Gorgucci, 2002: A methodology for estimating the parameters of a gamma raindrop size distribution model from polarimetric radar data: Application to a squall-line event from the TRMM/Brazil campaign. J. Atmos. Oceanic Technol., 19, 633645, doi:10.1175/1520-0426(2002)019<0633:AMFETP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354365, doi:10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., M. Thurai, K. Nakagawa, G. J. Huang, T. Kobayahi, A. Adachi, H. Hanando, and S. Sekizawa, 2006: Rainfall estimation from C-band polarimetric radar in Okinawa, Japan: Comparisons with 2D-video disdrometer and 400 MHz wind profiler. J. Meteor. Soc. Japan, 84, 705724, doi:10.2151/jmsj.84.705.

    • Search Google Scholar
    • Export Citation
  • Brunkow, D., V. N. Bringi, P. C. Kennedy, S. A. Rutledge, V. Chandrasekar, E. A. Mueller, and R. K. Bowie, 2000: A description of the CSU–CHILL National Radar Facility. J. Atmos. Oceanic Technol., 17, 15961608, doi:10.1175/1520-0426(2000)017<1596:ADOTCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., 2002: Vertical wind shear associated with left-moving supercells. Wea. Forecasting, 17, 845855, doi:10.1175/1520-0434(2002)017<0845:VWSAWL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and W. A. Petersen, 2015: Sensitivity of C-band polarimetric radar-based drop size measurements to maximum diameter. J. Appl. Meteor. Climatol., doi:10.1175/JAMC-D-14-0079.1, in press.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., S. A. Rutledge, D. A. Ahijevych, and T. D. Keenan, 2000: Correcting propagation effects in C-band polarimetric radar observations of tropical convection using differential propagation phase. J. Appl. Meteor., 39, 14051433, doi:10.1175/1520-0450(2000)039<1405:CPEICB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and C. B. Blankenship, 2012: Toward a global climatology of severe hailstorms as estimated by satellite passive microwave imagers. J. Climate, 25, 687703, doi:10.1175/JCLI-D-11-00130.1.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., and V. N. Bringi, 1987: Simulation of radar reflectivity and surface measurements of rainfall. J. Atmos. Oceanic Technol., 4, 464478, doi:10.1175/1520-0426(1987)004<0464:SORRAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, W., 2012: Giant raindrops from sub-tropical convective precipitation system: A case study. Extended Abstracts, Seventh European Conf. on Radar in Meteorology and Hydrology, Toulouse, France, ERAD, 6 pp. [Available online at http://www.meteo.fr/cic/meetings/2012/ERAD/extended_abs/MIC_062_ext_abs.pdf.]

  • Chappell, P. R., C. Ganter, C. P. Guard, M. A. Lander, G. Macara, S. McGree, and S. Tobin, 2014: [Regional Climate] Oceania [in “State of the Climate in 2013”]. Bull. Amer. Meteor. Soc., 95 (7), S204S213.

    • Search Google Scholar
    • Export Citation
  • Ducrocq, V., and Coauthors, 2014: HyMeX-SOP1: The field campaign dedicated to heavy precipitation and flash flooding in the northwestern Mediterranean. Bull. Amer. Meteor. Soc., 95, 10831100, doi:10.1175/BAMS-D-12-00244.1.

    • Search Google Scholar
    • Export Citation
  • Frisby, E. M., and H. W. Sansom, 1967: Hail incidence in the tropics. J. Appl. Meteor., 6, 339354, doi:10.1175/1520-0450(1967)006<0339:HIITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., R. J. Kane, and C. R. Chelius, 1986: The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Climate Appl. Meteor., 25, 13331345, doi:10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fujiwara, M., 1965: Raindrop-size distribution from individual storms. J. Atmos. Sci., 22, 585591, doi:10.1175/1520-0469(1965)022<0585:RSDFIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fujiyoshi, Y., I. Yamamura, N. Nagumo, K. Nakagawa, K. Muramoto, and T. Shimomai, 2008: The maximum size of raindrops—Can it be a proxy of precipitation climatology? Extended Abstracts, 15th Int. Conf. on Clouds and Precipitation, Cancun, Mexico, International Commission on Clouds and Precipitation, P1.31. [Available online at http://cabernet.atmosfcu.unam.mx/ICCP-2008/abstracts/Program_on_line/Poster_01/Fujiyoshi_extended.pdf.]

  • Gorgucci, E., V. Chandrasekar, V. N. Bringi, and G. Scarchilli, 2002: Estimation of raindrop size distribution parameters from polarimetric radar measurements. J. Atmos. Sci., 59, 23732384, doi:10.1175/1520-0469(2002)059<2373:EORSDP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6, 243248, doi:10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. L. Rangno, 2004: Super-large raindrops. Geophys. Res. Lett., 31, L13102, doi:10.1029/2004GL020167.

  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement (GPM) mission. Bull. Amer. Meteor. Soc., 95,701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and I. J. Caylor, 1989: Polarization radar estimates of raindrop size spectra and rainfall rates. J. Atmos. Oceanic Technol., 6, 939949, doi:10.1175/1520-0426(1989)006<0939:PREORS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., J. W. F. Goddard, and S. M. Cherry, 1987: Polarization radar studies of precipitation development in convective storms. Quart. J. Roy. Meteor. Soc., 113, 469489, doi:10.1002/qj.49711347604.

    • Search Google Scholar
    • Export Citation
  • Jaffrain, J., and A. Berne, 2012: Influence of the subgrid variability of the raindrop size distribution on radar rainfall estimators. J. Appl. Meteor. Climatol., 51, 780785, doi:10.1175/JAMC-D-11-0185.1.

    • Search Google Scholar
    • Export Citation
  • Jaffrain, J., A. Studzinski, and A. Berne, 2011: A network of disdrometers to quantify the small-scale variability of the raindrop size distribution. Water Resour. Res., 47, W00H06, doi:10.1029/2010WR009872.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., L. D. Carey, D. S. Zrnić, and P. T. May, 2001: Sensitivity of 5-cm wavelength polarimetric radar variables to raindrop axial ratio and drop size distribution. J. Appl. Meteor., 40, 526545, doi:10.1175/1520-0450(2001)040<0526:SOCWPR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, T., and A. Adachi, 2001: Measurements of raindrop breakup by using UHF wind profilers. Geophys. Res. Lett., 28, 40714074, doi:10.1029/2001GL013254.

    • Search Google Scholar
    • Export Citation
  • Kozu, T., T. Shimomai, Z. Akramin, Marzuki, Y. Shibagaki, and H. Hashiguchi, 2005: Intraseasonal variation of raindrop size distribution at Koto Tabang, West Sumatra, Indonesia. Geophys. Res. Lett., 32, L07803, doi:10.1029/2004GL022340.

    • Search Google Scholar
    • Export Citation
  • Kruger, A., and W. F. Krajewski, 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19, 602617, doi:10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Laws, J. O., 1941: Measurements of the fall velocity of water drops and rain drops. Hydrology, 22, 709721.

  • Lee, C. K., G. W. Lee, I. Zawadzki, and K. Kim, 2009: A preliminary analysis of spatial variability of raindrop size distributions during stratiform rain events. J. Appl. Meteor. Climatol., 48, 270283, doi:10.1175/2008JAMC1877.1.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387, doi:10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maeso, J., V. N. Bringi, and V. Chandrasekar, 2005: DSD characterization and computations of expected reflectivity using data from a two-dimensional video disdrometer deployed in a tropical environment. Proc. 2005 IEEE Int. Geoscience and Remote Sensing Symp., Seoul, South Korea, IEEE, 50735076, doi:10.1109/IGARSS.2005.1526820.

  • May, P. T., A. R. Jameson, T. D. Keenan, and P. E. Johnston, 2001: A comparison between polarimetric radar and wind profiler observations of precipitation in tropical showers. J. Appl. Meteor., 40, 17021717, doi:10.1175/1520-0450(2001)040<1702:ACBPRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G., 2010: Raindrop size distribution and evolution. Rainfall, State of the Science, Geophys. Monogr., Vol. 191, Amer. Geophys. Union, 49–60.

  • Miriovsky, B. J., and Coauthors, 2004: An experimental study of small-scale variability of radar reflectivity using disdrometer observations. J. Appl. Meteor., 43, 106118, doi:10.1175/1520-0450(2004)043<0106:AESOSV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mori, S., and Coauthors, 2004: Diurnal land–sea rainfall peak migration over Sumatera Island, Indonesian Maritime Continent, observed by TRMM satellite and intensive rawinsonde soundings. Mon. Wea. Rev., 132, 20212039, doi:10.1175/1520-0493(2004)132<2021:DLRPMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nešpor, V., W. F. Krajewski, and A. Kruger, 2000: Wind-induced error of raindrop size distribution measurement using a two-dimensional video disdrometer. J. Atmos. Oceanic Technol., 17, 14831492, doi:10.1175/1520-0426(2000)017<1483:WIEORS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., J. L. McBride, and R. J. Ormerod, 1982: On predicting the onset of the Australian wet season at Darwin. Mon. Wea. Rev., 110, 1417, doi:10.1175/1520-0493(1982)110<0014:OPTOOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and K. V. Beard, 1970: A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Quart. J. Roy. Meteor. Soc., 96, 247256, doi:10.1002/qj.49709640807.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and A. J. Heymsfield, 1987: Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44, 27542763, doi:10.1175/1520-0469(1987)044<2754:MASOGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., V. Levizzani, and H. R. Pruppacher, 1984: A wind tunnel and theoretical study on the melting behavior of atmospheric ice particles: III. Experiment and theory for spherical ice particles of radius > 500 μm. J. Atmos. Sci., 41, 381388, doi:10.1175/1520-0469(1984)041<0381:AWTATS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., K. V. Beard, and B. M. Andrews, 1991: A mechanism for giant raindrop formation in warm, shallow convective clouds. J. Atmos. Sci., 48, 17911797, doi:10.1175/1520-0469(1991)048<1791:AMFGRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., and D. S. Zrnić, 1995: Precipitation and attenuation measurements at a 10-cm wavelength. J. Appl. Meteor., 34, 21212134, doi:10.1175/1520-0450(1995)034<2120:PAAMAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., and D. S. Zrnić, 1996: Rain in shallow and deep convection measured with a polarimetric radar. J. Atmos. Sci., 53, 29892995, doi:10.1175/1520-0469(1996)053<2989:RISADC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., M. R. Kumjian, S. M. Ganson, and A. P. Khain, 2013: Polarimetric radar characteristics of melting hail. Part I: Theoretical simulations using spectral microphysical modeling. J. Appl. Meteor. Climatol., 52, 28492870, doi:10.1175/JAMC-D-13-073.1.

    • Search Google Scholar
    • Export Citation
  • Sachidananda, M., and D. S. Zrnić, 1987: Rain rate estimates from differential polarization measurements. J. Atmos. Oceanic Technol., 4, 588598, doi:10.1175/1520-0426(1987)004<0588:RREFDP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schönhuber, M., G. Lammer, and W. L. Randeu, 2008: The 2D-video-distrometer. Precipitation: Advances in Measurement, Estimation and Prediction, S. Michaelides, Ed., Springer, 3–31.

  • Schuur, T. J., A. V. Ryzhkov, D. S. Zrnić, and M. Schönhuber, 2001: Drop size distributions measured by a 2D video disdrometer: Comparison with dual-polarization radar data. J. Appl. Meteor., 40, 10191034, doi:10.1175/1520-0450(2001)040<1019:DSDMBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, A. M., G. M. McFarquhar, R. M. Rauber, J. A. Grim, M. S. Timlin, B. F. Jewett, and D. P. Jorgensen, 2009: Microphysical and thermodynamic structure and evolution of the trailing stratiform regions of mesoscale convective systems during BAMEX. Part I: Observations. Mon. Wea. Rev., 137, 11651185, doi:10.1175/2008MWR2504.1.

    • Search Google Scholar
    • Export Citation
  • Smith, P. L., Z. Liu, and J. Joss, 1993: A study of sampling-variability effects in raindrop size observations. J. Appl. Meteor., 32, 12591269, doi:10.1175/1520-0450(1993)032<1259:ASOSVE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., J. D. Marwitz, J. C. Pace, and R. E. Carbone, 1984: Characteristics through the melting layer of stratiform clouds. J. Atmos. Sci., 41, 32273237, doi:10.1175/1520-0469(1984)041<3227:CTTMLO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Szakáll, M., K. Diehl, S. K. Mitra, and S. Borrmann, 2010: Shapes and oscillations of falling raindrops—A review. Atmos. Res., 97, 416425, doi:10.1016/j.atmosres.2010.03.024.

    • Search Google Scholar
    • Export Citation
  • Szumowski, M. J., R. M. Rauber, H. T. Ochs, and K. V. Beard, 1998: The microphysical structure and evolution of Hawaiian rainband clouds. Part II: Aircraft measurements within rainbands containing high reflectivity cores. J. Atmos. Sci., 55, 208226, doi:10.1175/1520-0469(1998)055<0208:TMSAEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., K. Suzuki, M. Orita, M. Tokuno, and R. de la Mar, 1995: Videosonde observations of precipitation processes in equatorial cloud clusters. J. Meteor. Soc. Japan, 73, 509534.

    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., R. Checa, and M. de Castro, 2010: An experiment to measure the spatial variability of rain drop size distribution using sixteen laser disdrometers. Geophys. Res. Lett., 37, L16803, doi:10.1029/2010GL044120.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., and V. N. Bringi, 2005: Drop axis ratios from a 2D video disdrometer. J. Atmos. Oceanic Technol., 22, 966978, doi:10.1175/JTECH1767.1.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., and V. N. Bringi, 2008: Polarimetric radar and advanced disdrometers. Precipitation: Advances in Measurement, Estimation and Prediction, S. Michaelides, Ed., Springer, 233–284.

  • Thurai, M., G. J. Huang, V. N. Bringi, W. L. Randeu, and M. Schönhuber, 2007: Drop shapes, model comparisons, and calculations of polarimetric radar parameters in rain. J. Atmos. Oceanic Technol., 24, 10191032, doi:10.1175/JTECH2051.1.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., V. N. Bringi, M. Szakáll, S. K. Mitra, K. V. Beard, and S. Borrmann, 2009: Drop shapes and axis ratio distributions: Comparison between 2D video disdrometer and wind-tunnel measurements. J. Atmos. Oceanic Technol., 26, 14271432, doi:10.1175/2009JTECHA1244.1.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., V. N. Bringi, L. D. Carey, P. Gatlin, E. Schultz, and W. A. Petersen, 2012: Estimating the accuracy of polarimetric radar–based retrievals of drop-size distribution parameters and rain rate: An application of error variance separation using radar-derived spatial correlations. J. Hydrometeor., 13, 10661079, doi:10.1175/JHM-D-11-070.1.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., V. N. Bringi, W. A. Petersen, and P. N. Gatlin, 2013: Drop shapes and fall speeds in rain: Two contrasting examples. J. Appl. Meteor. Climatol., 52, 25672581, doi:10.1175/JAMC-D-12-085.1.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., P. N. Gatlin, V. N. Bringi, and L. D. Carey, 2014: Very large rain drops from 2D video disdrometers and concomitant polarimetric radar observations. Extended Abstracts, Eighth European Conf. on Radar Meteorology and Hydrology (ERAD 2014), Garmisch-Partenkirchen, Germany, Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center), Abstract 231. [Available online at http://www.pa.op.dlr.de/erad2014/programme/ExtendedAbstracts/231_Thurai.pdf.]

  • Tokay, A., and P. G. Bashor, 2010: An experimental study of small-scale variability of raindrop size distribution. J. Appl. Meteor. Climatol., 49, 23482365, doi:10.1175/2010JAMC2269.1.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., A. Kruger, and W. F. Krajewski, 2001: Comparison of drop size distribution measurements by impact and optical disdrometers. J. Appl. Meteor., 40, 20832097, doi:10.1175/1520-0450(2001)040<2083:CODSDM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., A. Kruger, W. F. Krajewski, P. A. Kucera, and A. J. P. Filho, 2002: Measurements of drop size distribution in the southwestern Amazon basin. J. Geophys. Res.,107, 8052, doi:10.1029/2001JD000355.

  • Tokay, A., P. G. Bashor, E. Habib, and T. Kasparis, 2008: Raindrop size distribution measurements in tropical cyclones. Mon. Wea. Rev., 136, 16691685, doi:10.1175/2007MWR2122.1.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., W. A. Petersen, P. Gatlin, and M. Wingo, 2013: Comparison of raindrop size distribution measurements by collocated disdrometers. J. Atmos. Oceanic Technol., 30, 16721690, doi:10.1175/JTECH-D-12-00163.1.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775, doi:10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1985: The effects of drop size distribution truncation on rainfall integral parameters and empirical relations. J. Climate Appl. Meteor., 24, 580590, doi:10.1175/1520-0450(1985)024<0580:TEODSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1992: Effects of drop-size-distribution truncation on computer simulations of dual-measurement radar methods. J. Appl. Meteor., 31, 689699, doi:10.1175/1520-0450(1992)031<0689:EODSDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and D. Atlas, 1998: Rainfall microphysics and radar properties: Analysis methods for drop size spectra. J. Appl. Meteor., 37, 912923, doi:10.1175/1520-0450(1998)037<0912:RMARPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S., J. M. Wallace, M. L. Hutchins, and R. H. Holzworth, 2013: Highlights of a new ground-based, hourly global lightning climatology. Bull. Amer. Meteor. Soc., 94, 13811391, doi:10.1175/BAMS-D-12-00082.1.

    • Search Google Scholar
    • Export Citation
  • Williams, C., and Coauthors, 2014: Describing the shape of raindrops size distributions using uncorrelated raindrop mass spectrum parameters. J. Appl. Meteor. Climatol., 53, 12821296, doi:10.1175/JAMC-D-13-076.1.

    • Search Google Scholar
    • Export Citation
  • Willis, P. T., and A. J. Heymsfield, 1989: Structure of the melting layer in mesoscale convective system stratiform precipitation. J. Atmos. Sci., 46, 20082025, doi:10.1175/1520-0469(1989)046<2008:SOTMLI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., T. D. Keenan, L. D. Carey, and P. May, 2000: Sensitivity analysis of polarimetric variables at a 5-cm wavelength in rain. J. Appl. Meteor., 39, 15141526, doi:10.1175/1520-0450(2000)039<1514:SAOPVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1416 445 11
PDF Downloads 567 78 8