Cluster Analysis of A-Train Data: Approximating the Vertical Cloud Structure of Oceanic Cloud Regimes

Richard L. Bankert Naval Research Laboratory, Monterey, California

Search for other papers by Richard L. Bankert in
Current site
Google Scholar
PubMed
Close
and
Jeremy E. Solbrig Naval Research Laboratory, Monterey, California

Search for other papers by Jeremy E. Solbrig in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Moderate Resolution Imaging Spectroradiometer (MODIS) data continue to provide a wealth of two-dimensional, cloud-top information and derived environmental products. In addition, the A-Train constellation of satellites presents an opportunity to combine MODIS data with coincident vertical-profile data collected from sensors on CloudSat and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). Approximating the vertical structure of clouds in data-sparse regions can be accomplished through a two-step process that consists of cluster analysis of MODIS data and quantitative analysis of coincident vertical-profile data. Daytime data over the eastern North Pacific Ocean are used in this study for both the summer (June–August) and winter (December–February) seasons in separate cluster analyses. A-Train data from 2006 to 2009 are collected, and a K-means cluster analysis is applied to selected MODIS data that are coincident with single-layer clouds found in the CloudSat/CALIPSO (“GEOPROF-lidar”) data. The resultant clusters, 16 in both summer and winter, are quantified in terms of average cloud-base height, cloud-top height, and normalized cloud water content profile. A cluster and its quantified characteristics can then be assigned to a given pixel in near real-time MODIS data, regardless of its proximity to the observed vertical-profile data. When applied to a two-dimensional MODIS dataset, these assigned clusters can provide an approximate three-dimensional representation of the cloud scene.

Corresponding author address: Richard Bankert, Naval Research Laboratory, 7 Grace Hopper Ave., Monterey, CA 93943-5502. E-mail: rich.bankert@nrlmry.navy.mil

Abstract

Moderate Resolution Imaging Spectroradiometer (MODIS) data continue to provide a wealth of two-dimensional, cloud-top information and derived environmental products. In addition, the A-Train constellation of satellites presents an opportunity to combine MODIS data with coincident vertical-profile data collected from sensors on CloudSat and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). Approximating the vertical structure of clouds in data-sparse regions can be accomplished through a two-step process that consists of cluster analysis of MODIS data and quantitative analysis of coincident vertical-profile data. Daytime data over the eastern North Pacific Ocean are used in this study for both the summer (June–August) and winter (December–February) seasons in separate cluster analyses. A-Train data from 2006 to 2009 are collected, and a K-means cluster analysis is applied to selected MODIS data that are coincident with single-layer clouds found in the CloudSat/CALIPSO (“GEOPROF-lidar”) data. The resultant clusters, 16 in both summer and winter, are quantified in terms of average cloud-base height, cloud-top height, and normalized cloud water content profile. A cluster and its quantified characteristics can then be assigned to a given pixel in near real-time MODIS data, regardless of its proximity to the observed vertical-profile data. When applied to a two-dimensional MODIS dataset, these assigned clusters can provide an approximate three-dimensional representation of the cloud scene.

Corresponding author address: Richard Bankert, Naval Research Laboratory, 7 Grace Hopper Ave., Monterey, CA 93943-5502. E-mail: rich.bankert@nrlmry.navy.mil
Save
  • Bankert, R. L., and D. W. Aha, 1996: Improvement to a neural network classifier. J. Appl. Meteor., 35, 20362039, doi:10.1175/1520-0450(1996)035<2036:ITANNC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., M. P. Jerg, T. Wehr, S. Kato, D. P. Donovan, and R. J. Hogan, 2011: A 3D cloud-construction algorithm for the EarthCARE satellite mission. Quart. J. Roy. Meteor. Soc., 137, 10421058, doi:10.1002/qj.824.

    • Search Google Scholar
    • Export Citation
  • Berry, E., and G. G. Mace, 2013: Cirrus cloud properties and the large-scale meteorological environment: Relationships derived from A-Train and NCEP–NCAR reanalysis data. J. Appl. Meteor. Climatol., 52, 12531276, doi:10.1175/JAMC-D-12-0102.1.

    • Search Google Scholar
    • Export Citation
  • Donovan, M. F., E. R. Williams, C. Kessinger, G. Blackburn, P. H. Herzegh, R. L. Bankert, S. Miller, and F. R. Mosher, 2008: The identification of hazardous convective cells over oceans using visible and infrared satellite observations. J. Appl. Meteor. Climatol., 47, 164184, doi:10.1175/2007JAMC1471.1.

    • Search Google Scholar
    • Export Citation
  • Gordon, N. D., and J. R. Norris, 2010: Cluster analysis of midlatitude oceanic cloud regimes: Mean properties and temperature sensitivity. Atmos. Chem. Phys., 10, 64356459, doi:10.5194/acp-10-6435-2010.

    • Search Google Scholar
    • Export Citation
  • Gordon, N. D., J. R. Norris, C. P. Weaver, and S. A. Klein, 2005: Cluster analysis of cloud regimes and characteristic dynamics of midlatitude synoptic systems in observations and a model. J. Geophys. Res., 110, D15S17, doi:10.1029/2004JD005027.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., and G. Tselioudis, 2003: Objective identification of cloud regimes in the tropical western Pacific. Geophys. Res. Lett., 30, 2082, doi:10.1029/2003GL018367.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and J. H. Jiang, 2010: Touring the atmosphere aboard the A-Train. Phys. Today, 63, 36, doi:10.1063/1.3463626.

  • Mace, G. G., D. Vane, G. Stephens, and D. Reinke, 2007: Level 2 radar–lidar GEOPROF product version 1.0 process description and interface control document. Jet Propulsion Laboratory Doc. D-xxxx, 20 pp. [Available online at http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2B-GEOPROF-LIDAR_PDICD.P2_R04.20070604.pdf.]

  • Miller, S. D., and Coauthors, 2014: Estimating three-dimensional cloud structure via statistically blended satellite observations. J. Appl. Meteor. Climatol., 53, 437455, doi:10.1175/JAMC-D-13-070.1.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473, doi:10.1109/TGRS.2002.808301.

    • Search Google Scholar
    • Export Citation
  • Rajaraman, A., and J. D. Ullman, 2011: Mining of Massive Datasets. Cambridge University Press, 315 pp.

  • Strabala, K. I., S. A. Ackerman, and W. P. Menzel, 1994: Cloud properties inferred from 8–12-μm data. J. Appl. Meteor., 33, 212229, doi:10.1175/1520-0450(1994)033<0212:CPIFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Su, H., J. H. Jiang, J. Teixeira, A. Gettelman, X. Huang, G. Stephens, D. Vane, and V. S. Perun, 2011: Comparison of regime-sorted tropical cloud profiles observed by CloudSat with GEOS5 analyses and two general circulation model simulations. J. Geophys. Res., 116, D09104, doi:10.1029/2010JD014971.

    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., W. Rossow, Y. Zhang, and D. Konsta, 2013: Global weather states and their properties from passive and active satellite cloud retrievals. J. Climate, 26, 77347746, doi:10.1175/JCLI-D-13-00024.1.

    • Search Google Scholar
    • Export Citation
  • Wang, F., and C. Kummerow, 2012: A clustering approach to compare model simulations to satellite observations. J. Climate, 25, 78967916, doi:10.1175/JCLI-D-11-00472.1.

    • Search Google Scholar
    • Export Citation
  • Wood, N., 2008: Level 2B radar-visible optical depth cloud water content (2B-CWC-RVOD) process description document: Version 5.1. Colorado State University Tech. Rep., 26 pp. [Available online at http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2B-CWC-RVOD_PDICD.P_R04.20081023.pdf.]

  • Zhang, D., Z. Wang, and D. Liu, 2010: A global view of midlevel liquid-layer topped stratiform cloud distribution and phase partition from CALIPSO and CloudSat measurements. J. Geophys. Res., 115 , D00H13, doi:10.1029/2009JD012143.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., S. Klein, G. G. Mace, and J. Boyle, 2007: Cluster analysis of tropical clouds using CloudSat data. Geophys. Res. Lett., 34, L12813, doi:10.1029/2007GL029336.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1051 712 33
PDF Downloads 225 49 4