Linear Depolarization Ratios of Columnar Ice Crystals in a Deep Precipitating System over the Arctic Observed by Zenith-Pointing Ka-Band Doppler Radar

Mariko Oue Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Mariko Oue in
Current site
Google Scholar
PubMed
Close
,
Matthew R. Kumjian Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Matthew R. Kumjian in
Current site
Google Scholar
PubMed
Close
,
Yinghui Lu Department of Meteorology, and Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Yinghui Lu in
Current site
Google Scholar
PubMed
Close
,
Johannes Verlinde Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Johannes Verlinde in
Current site
Google Scholar
PubMed
Close
,
Kultegin Aydin Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Kultegin Aydin in
Current site
Google Scholar
PubMed
Close
, and
Eugene E. Clothiaux Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Eugene E. Clothiaux in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study demonstrates that linear depolarization ratio (LDR) values obtained from zenith-pointing Ka-band radar Doppler velocity spectra are sufficient for detecting columnar ice crystals. During a deep precipitating system over the Arctic on 7 December 2013, the radar recorded LDR values up to −15 dB at temperatures corresponding to the columnar ice crystal growth regime. These LDR values were also consistent with scattering calculations for columnar ice crystals. Enhancements in LDR were suppressed within precipitation fallstreaks because the enhanced LDR values of columnar ice crystals were masked by the returns from the particles within the fallstreaks. However, Doppler velocity spectra of LDR within the fallstreak distinguished populations of slower-falling particles with high LDR (>−15 dB) and faster-falling particles with much lower LDR, suggesting that columnar ice crystals with high LDR coexisted with larger isometric particles that produced low LDR while dominating the total copolar reflectivity, thereby decreasing LDR. The measurements suggest that the columnar ice crystals originated in liquid-cloud layers through secondary ice production.

Corresponding author address: Mariko Oue, Dept. of Meteorology, The Pennsylvania State University, University Park, PA 16802. E-mail: muo15@psu.edu

Abstract

This study demonstrates that linear depolarization ratio (LDR) values obtained from zenith-pointing Ka-band radar Doppler velocity spectra are sufficient for detecting columnar ice crystals. During a deep precipitating system over the Arctic on 7 December 2013, the radar recorded LDR values up to −15 dB at temperatures corresponding to the columnar ice crystal growth regime. These LDR values were also consistent with scattering calculations for columnar ice crystals. Enhancements in LDR were suppressed within precipitation fallstreaks because the enhanced LDR values of columnar ice crystals were masked by the returns from the particles within the fallstreaks. However, Doppler velocity spectra of LDR within the fallstreak distinguished populations of slower-falling particles with high LDR (>−15 dB) and faster-falling particles with much lower LDR, suggesting that columnar ice crystals with high LDR coexisted with larger isometric particles that produced low LDR while dominating the total copolar reflectivity, thereby decreasing LDR. The measurements suggest that the columnar ice crystals originated in liquid-cloud layers through secondary ice production.

Corresponding author address: Mariko Oue, Dept. of Meteorology, The Pennsylvania State University, University Park, PA 16802. E-mail: muo15@psu.edu
Save
  • Andrić, J., M. R. Kumjian, D. Zrnić, J. M. Straka, and V. Melnikov, 2013: Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. J. Appl. Meteor. Climatol., 52, 682700, doi:10.1175/JAMC-D-12-028.1.

    • Search Google Scholar
    • Export Citation
  • Auer, A. H., Jr., and D. L. Veal, 1970: The dimension of ice crystals in natural clouds. J. Atmos. Sci., 27, 919926, doi:10.1175/1520-0469(1970)027<0919:TDOICI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Aydin, K., and C. Tang, 1997: Millimeter wave radar scattering from model ice crystal distributions. IEEE Trans. Geosci. Remote Sens., 35, 140146, doi:10.1109/36.551942.

    • Search Google Scholar
    • Export Citation
  • Aydin, K., and T. M. Walsh, 1999: Millimeter wave scattering from spatial and planar bullet rosettes. IEEE Trans. Geosci. Remote Sens., 37, 11381150, doi:10.1109/36.752232.

    • Search Google Scholar
    • Export Citation
  • Aydin, K., and J. Singh, 2004: Cloud ice crystal classification using a 95-GHz polarimetric radar. J. Atmos. Oceanic Technol., 21, 16791688, doi:10.1175/JTECH1671.1.

    • Search Google Scholar
    • Export Citation
  • Bechini, R., L. Baldini, and V. Chandrasekar, 2013: Polarimetric radar observations in the ice region of precipitating clouds at C-band and X-band radar frequencies. J. Appl. Meteor. Climatol., 52, 11471169, doi:10.1175/JAMC-D-12-055.1.

    • Search Google Scholar
    • Export Citation
  • Bharadwaj, N., K. B. Widener, K. L. Johnson, S. Collis, and A. Koontz, 2011: ARM radar infrastructure for global and regional climate study. 35th Conf. on Radar Meteorology, Pittsburgh, PA, Amer. Meteor. Soc., 16B.4. [Available online at https://ams.confex.com/ams/35Radar/webprogram/Paper191707.html.]

  • Bharadwaj, N., A. Lindenmaier, K. B. Widener, K. L. Johnson, and V. Venkatesh, 2013: Ka-band ARM zenith pointing radar network for climate study. 36th Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor. Soc., 14A.8. [Available online at https://ams.confex.com/ams/36Radar/webprogram/Paper228620.html.]

  • Chandrasekar, V., and R. J. Keeler, 1993: Antenna pattern analysis and measurements for multiparameter radars. J. Atmos. Oceanic Technol., 10, 674683, doi:10.1175/1520-0426(1993)010<0674:APAAMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Gossard, E. E., J. B. Snider, E. E. Clothiaux, B. E. Martner, J. S. Gibson, R. A. Kropfli, and A. S. Frisch, 1997: The potential of 8-mm radars for remotely sensing cloud droplet size distributions. J. Atmos. Oceanic Technol., 14, 7687, doi:10.1175/1520-0426(1997)014<0076:TPOMRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hall, M. P. M., J. W. F. Goddard, and S. M. Cherry, 1984: Identification of hydrometeors and other targets by dual-polarization radar. Radio Sci., 19, 132140, doi:10.1029/RS019i001p00132.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628, doi:10.1038/249026a0.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., K. J. Sulia, and H. Morrison, 2013: A method for adaptive habit prediction in bulk microphysical models. Part II: Parcel model corroboration. J. Atmos. Sci., 70, 365376, doi:10.1175/JAS-D-12-0152.1.

    • Search Google Scholar
    • Export Citation
  • Herman, G., and R. Goody, 1976: Formation and persistence of summertime Arctic stratus clouds. J. Atmos. Sci., 33, 15371554, doi:10.1175/1520-0469(1976)033<1537:FAPOSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., 1972: Ice crystal terminal velocities. J. Atmos. Sci., 29, 13481357, doi:10.1175/1520-0469(1972)029<1348:ICTV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., S. M. Ellis, W.-Y. Chang, and Y.-C. Liou, 2014a: X-band polarimetric observations of cross coupling in the ice phase of convective storms in Taiwan. J. Appl. Meteor. Climatol., 53, 16781695, doi:10.1175/JAMC-D-13-0360.1.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., S. M. Ellis, W.-Y. Chang, S. Rutledge, and M. Dixon, 2014b: Modeling and interpretation of S-band ice crystal depolarization signatures from data obtained by simultaneously transmitting horizontally and vertically polarized fields. J. Appl. Meteor. Climatol., 53, 16591677, doi:10.1175/JAMC-D-13-0158.1.

    • Search Google Scholar
    • Export Citation
  • Jayaweera, K. O. L. F., and R. E. Cottis, 1969: Fall velocities of plate-like and columnar ice crystals. Quart. J. Roy. Meteor. Soc., 95, 703709, doi:10.1002/qj.49709540604.

    • Search Google Scholar
    • Export Citation
  • Jayaweera, K. O. L. F., and T. Ohtake, 1974: Properties of columnar ice crystals precipitating front layer clouds. J. Atmos. Sci., 31, 280286, doi:10.1175/1520-0469(1974)031<0280:POCICP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., and S. A. Rutledge, 2011: S-band dual-polarization radar observations of winter storms. J. Appl. Meteor. Climatol., 50, 844858, doi:10.1175/2010JAMC2558.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. A. Rutledge, R. M. Rasmussen, P. C. Kennedy, and M. Dixon, 2014: High-resolution polarimetric radar observations of snow-generating cells. J. Appl. Meteor. Climatol., 53, 16361658, doi:10.1175/JAMC-D-13-0312.1.

    • Search Google Scholar
    • Export Citation
  • Lhermitte, R. M., 1987: Small cumuli observed with a 3 mm wavelength Doppler radar. Geophys. Res. Lett., 14, 707710, doi:10.1029/GL014i007p00707.

    • Search Google Scholar
    • Export Citation
  • Liljegren, J. C., E. E. Clothiaux, G. G. Mace, S. Kato, and X. Dong, 2001: A new retrieval for cloud liquid water path using a ground-based microwave radiometer and measurements of cloud temperature. J. Geophys. Res., 106, 14 48514 500, doi:10.1029/2000JD900817.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, doi:10.1029/JC079i015p02185.

    • Search Google Scholar
    • Export Citation
  • Magono, C., and C. W. Lee, 1966: Meteorological classification of natural snow crystals. J. Fac. Sci. Hokkaido Univ., Series VII, 2 (4), 321335.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 1991: Theoretical study of radar polarization parameters obtained from cirrus clouds. J. Atmos. Sci., 48, 10621070, doi:10.1175/1520-0469(1991)048<1062:TSORPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. F. Reinking, R. A. Kropfli, and B. W. Bartram, 1996: Estimation of ice hydrometeor types and shapes from radar polarization measurements. J. Atmos. Oceanic Technol., 13, 8596, doi:10.1175/1520-0426(1996)013<0085:EOIHTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. F. Reinking, R. A. Kropfli, B. E. Martner, and B. W. Bartram, 2001: On the use of radar depolarization ratios for estimating shapes of ice hydrometeors in winter clouds. J. Appl. Meteor., 40, 479490, doi:10.1175/1520-0450(2001)040<0479:OTUORD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., G. G. Mace, R. Marchand, M. D. Shupe, A. G. Hallar, and I. B. McCubbin, 2012: Observations of ice crystal habits with a scanning polarimetric W-band radar at slant linear depolarization ratio mode. J. Atmos. Oceanic Technol., 29, 9891008, doi:10.1175/JTECH-D-11-00131.1.

    • Search Google Scholar
    • Export Citation
  • Oue, M., M. R. Kumjian, Y. Lu, Z. Jiang, E. E. Clothiaux, J. Verlinde, and K. Aydin, 2015: X-band polarimetric and Ka-band Doppler spectral radar observations of a graupel-producing Arctic mixed-phase cloud. J. Appl. Meteor. Climatol., in press.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. O., J. A. Curry, and J. M. Intrieri, 2001: Cloud–aerosol interactions during autumn over Beaufort Sea. J. Geophys. Res., 106, 15 07715 097, doi:10.1029/2000JD900267.

    • Search Google Scholar
    • Export Citation
  • Rambukkange, M. P., J. Verlinde, E. W. Eloranta, C. J. Flynn, and E. E. Clothiaux, 2011: Using Doppler spectra to separate hydrometeor populations and analyze ice precipitation in multilayered mixed-phase clouds. Geosci. Remote Sens. Lett. IEEE, 8, 108112, doi:10.1109/LGRS.2010.2052781.

    • Search Google Scholar
    • Export Citation
  • Rangno, A. L., and P. V. Hobbs, 2001: Ice particles in stratiform clouds in the Arctic and possible mechanisms for the production of high ice concentrations. J. Geophys. Res., 106, 15 06515 075, doi:10.1029/2000JD900286.

    • Search Google Scholar
    • Export Citation
  • Reinking, R. F., S. Y. Matrosov, L. A. Kropfli, and B. W. Bartram, 2002: Evaluation of a slant quasi-linear radar polarization state for distinguishing drizzle droplets, pristine ice crystals, and less regular ice particles. J. Atmos. Oceanic Technol., 19, 296321, doi:10.1175/1520-0426-19.3.296.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 2007: Depolarization in ice crystals and its effect on radar polarimetric measurements. J. Atmos. Oceanic Technol., 24, 12561267, doi:10.1175/JTECH2034.1.

    • Search Google Scholar
    • Export Citation
  • Schneebeli, M., N. Dawes, M. Lehning, and A. Berne, 2013: High-resolution vertical profiles of X-band polarimetric radar observables during snowfall in the Swiss Alps. J. Appl. Meteor. Climatol., 52, 378394, doi:10.1175/JAMC-D-12-015.1.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., and D. S. Zrnić, 1993: An algorithm to deduce hydrometeor types and contents from multiparameter radar data. Preprints, 26th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 513–516.

  • Sulia, K. J., J. Y. Harrington, and H. Morrison, 2013: A method for adaptive habit prediction in bulk microphysical models. Part III: Applications and studies within a two-dimensional kinematic model. J. Atmos. Sci., 70, 33023320, doi:10.1175/JAS-D-12-0316.1.

    • Search Google Scholar
    • Export Citation
  • Sulia, K. J., J. Y. Harrington, and H. Morrison, 2014: Dynamical and microphysical evolution during mixed-phase cloud glaciation using the bulk adaptive habit prediction model. J. Atmos. Sci., 71, 41584180, doi:10.1175/JAS-D-14-0070.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, E. J., S. A. Rutledge, B. Dolan, V. Chandrasekar, and B. Cheong, 2014: A dual-polarization radar hydrometeor classification algorithm for winter precipitation. J. Atmos. Oceanic Technol., 31, 14571481, doi:10.1175/JTECH-D-13-00119.1.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., S. A. Clough, J. C. Liljegren, E. E. Clothiaux, K. E. Cady-Pereira, and K. L. Gaustad, 2007: Retrieving liquid water path and precipitable water vapor from the Atmospheric Radiation Measurement (ARM) microwave radiometers. IEEE Trans. Geosci. Remote Sens., 45, 36803690, doi:10.1109/TGRS.2007.903703.

    • Search Google Scholar
    • Export Citation
  • Tyynelä, J., J. Leinonen, D. Moisseev, and T. Nousiainen, 2011: Radar backscattering from snowflakes: Comparison of fractal, aggregate, and soft spheroid models. J. Atmos. Oceanic Technol., 28, 13651372, doi:10.1175/JTECH-D-11-00004.1.

    • Search Google Scholar
    • Export Citation
  • Verlinde, J., M. P. Rambukkange, E. E. Clothiaux, G. M. McFarquhar, and E. W. Eloranta, 2013: Arctic multilayered mixed-phase cloud processes revealed in millimeter wave cloud radar Doppler spectra. J. Geophys. Res. Atmos., 118, 13 19913 213, doi:10.1002/2013JD020183.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., D. S. Zrnić, S. Ellis, D. Oye, A. V. Ryzhkov, and J. M. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388, doi:10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wakasugi, K., A. Mizutani, M. Matsuo, S. Fukao, and S. Kato, 1986: A direct method for deriving drop-size distribution and vertical air velocities from VHF Doppler radar spectra. J. Atmos. Oceanic Technol., 3, 623629, doi:10.1175/1520-0426(1986)003<0623:ADMFDD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wolde, M., and G. Vali, 2001: Polarimetric signatures from ice crystals observed at 95 GHz in winter clouds. Part I: Dependence on crystal form. J. Atmos. Sci., 58, 828841, doi:10.1175/1520-0469(2001)058<0828:PSFICO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yurkin, M. A., and A. G. Hoekstra, 2011: The discrete-dipole-approximation code ADDA: Capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transfer, 112, 22342247, doi:10.1016/j.jqsrt.2011.01.031.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1369 635 37
PDF Downloads 729 122 8