Sensitivity of C-Band Polarimetric Radar–Based Drop Size Estimates to Maximum Diameter

Lawrence D. Carey Department of Atmospheric Science, University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Lawrence D. Carey in
Current site
Google Scholar
PubMed
Close
and
Walter A. Petersen NASA Goddard Space Flight Center, Wallops Flight Facility, Wallops Island, Virginia

Search for other papers by Walter A. Petersen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Estimating raindrop size has been a long-standing objective of polarimetric radar–based precipitation retrieval methods. The relationship between the differential reflectivity Zdr and the median volume diameter D0 is typically derived empirically using raindrop size distribution observations from a disdrometer, a raindrop physical model, and a radar scattering model. Because disdrometers are known to undersample large raindrops, the maximum drop diameter Dmax is often an assumed parameter in the rain physical model. C-band Zdr is sensitive to resonance scattering at drop diameters larger than 5 mm, which falls in the region of uncertainty for Dmax. Prior studies have not accounted for resonance scattering at C band and Dmax uncertainty in assessing potential errors in drop size retrievals. As such, a series of experiments are conducted that evaluate the effect of Dmax parameterization on the retrieval error of D0 from a fourth-order polynomial function of C-band Zdr by varying the assumed Dmax through the range of assumptions found in the literature. Normalized bias errors for estimating D0 from C-band Zdr range from −8% to 15%, depending on the postulated error in Dmax. The absolute normalized bias error increases with C-band Zdr, can reach 10% for Zdr as low as 1–1.75 dB, and can increase from there to values as large as 15%–45% for larger Zdr, which is a larger potential bias error than is found at S and X band. Uncertainty in Dmax assumptions and the associated potential D0 retrieval errors should be noted and accounted for in future C-band polarimetric radar studies.

Corresponding author address: Lawrence D. Carey, Dept. of Atmospheric Science, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805. E-mail: larry.carey@nsstc.uah.edu

Abstract

Estimating raindrop size has been a long-standing objective of polarimetric radar–based precipitation retrieval methods. The relationship between the differential reflectivity Zdr and the median volume diameter D0 is typically derived empirically using raindrop size distribution observations from a disdrometer, a raindrop physical model, and a radar scattering model. Because disdrometers are known to undersample large raindrops, the maximum drop diameter Dmax is often an assumed parameter in the rain physical model. C-band Zdr is sensitive to resonance scattering at drop diameters larger than 5 mm, which falls in the region of uncertainty for Dmax. Prior studies have not accounted for resonance scattering at C band and Dmax uncertainty in assessing potential errors in drop size retrievals. As such, a series of experiments are conducted that evaluate the effect of Dmax parameterization on the retrieval error of D0 from a fourth-order polynomial function of C-band Zdr by varying the assumed Dmax through the range of assumptions found in the literature. Normalized bias errors for estimating D0 from C-band Zdr range from −8% to 15%, depending on the postulated error in Dmax. The absolute normalized bias error increases with C-band Zdr, can reach 10% for Zdr as low as 1–1.75 dB, and can increase from there to values as large as 15%–45% for larger Zdr, which is a larger potential bias error than is found at S and X band. Uncertainty in Dmax assumptions and the associated potential D0 retrieval errors should be noted and accounted for in future C-band polarimetric radar studies.

Corresponding author address: Lawrence D. Carey, Dept. of Atmospheric Science, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805. E-mail: larry.carey@nsstc.uah.edu
Save
  • Andsager, K., K. V. Beard, and N. F. Laird, 1999: Laboratory measurements of axis ratios for large raindrops. J. Atmos. Sci., 56, 26732683, doi:10.1175/1520-0469(1999)056<2673:LMOARF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Aydin, K., and V. Giridhar, 1992: C-band dual-polarization radar observables in rain. J. Atmos. Oceanic Technol., 9, 383390, doi:10.1175/1520-0426(1992)009<0383:CBDPRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Aydin, K., H. Direskeneli, and T. Seliga, 1987: Dual-polarization radar estimation of rainfall parameters compared with ground-based disdrometer measurements: October 29, 1982 central Illinois experiment. IEEE Trans. Geosci. Remote Sens., GE-25, 834844, doi:10.1109/TGRS.1987.289755.

    • Search Google Scholar
    • Export Citation
  • Barber, P., and C. Yeh, 1975: Scattering of electromagnetic waves by arbitrary shaped dielectric bodies. Appl. Opt., 14, 28642872, doi:10.1364/AO.14.002864.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., and C. Chuang, 1987: A new model for the equilibrium shape of raindrops. J. Atmos. Sci., 44, 15091524, doi:10.1175/1520-0469(1987)044<1509:ANMFTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., and R. J. Kubesh, 1991: Laboratory measurements of small raindrop distortion. Part II: Oscillation frequencies and modes. J. Atmos. Sci., 48, 22452264, doi:10.1175/1520-0469(1991)048<2245:LMOSRD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., D. B. Johnson, and D. Baumgardner, 1986: Aircraft observations of large raindrops in warm, shallow, convective clouds. Geophys. Res. Lett., 13, 991994, doi:10.1029/GL013i010p00991.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., R. J. Kubesh, and H. T. Ochs, 1991: Laboratory measurements of small raindrop distortion. Part I: Axis ratios and fall behavior. J. Atmos. Sci., 48, 698710, doi:10.1175/1520-0469(1991)048<0698:LMOSRD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674685, doi:10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2, Corrigendum, 44, 186, doi:10.1175/1520-0450(2005)44<186:C>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2003: An evaluation of a drop distribution-based polarimetric radar rainfall estimator. J. Appl. Meteor., 42, 652660, doi:10.1175/1520-0450(2003)042<0652:AEOADD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2004a: Comparison of polarimetric radar drop size distribution retrieval algorithms. J. Atmos. Oceanic Technol., 21, 584598, doi:10.1175/1520-0426(2004)021<0584:COPRDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2004b: Drop size distribution retrieval with polarimetric radar: Model and application. J. Appl. Meteor., 43, 461475, doi:10.1175/1520-0450(2004)043<0461:DSDRWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications.Cambridge University Press, 636 pp.

  • Bringi, V. N., V. Chandrasekar, P. Meischner, J. Hubbert, and Y. Golestani, 1991: Polarimetric radar signatures of precipitation at S- and C-bands. IEE Proc. F Radar Signal Process., 138, 109119.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, and R. Xiao, 1998: Raindrop axis ratios and size distributions in Florida rainshafts: An assessment of multiparameter radar algorithms. IEEE Trans. Geosci. Remote Sens., 36, 703715, doi:10.1109/36.673663.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., G.-J. Huang, and V. Chandrasekar, 2002: A methodology for estimating the parameters of a gamma raindrop size distribution model from polarimetric radar data: Application to a squall-line event from the TRMM/Brazil Campaign. J. Atmos. Oceanic Technol., 19, 633645, doi:10.1175/1520-0426(2002)019<0633:AMFETP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354365, doi:10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., M. Thurai, K. Nakagawa, G. J. Huang, T. Kobayashi, A. Adachi, H. Hanado, and S. Sekizawa, 2006: Rainfall estimation from C-band polarimetric radar in Okinawa, Japan: Comparisons with 2D-video disdrometer and 400 MHz wind profiler. J. Meteor. Soc. Japan, 84, 705724, doi:10.2151/jmsj.84.705.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., C. R. Williams, M. Thurai, and P. T. May, 2009: Using dual-polarized radar and dual-frequency profiler for DSD characterization: A case study from Darwin, Australia. J. Atmos. Oceanic Technol., 26, 21072122, doi:10.1175/2009JTECHA1258.1.

    • Search Google Scholar
    • Export Citation
  • Cao, Q., and G. Zhang, 2009: Errors in estimating raindrop size distribution parameters employing disdrometer and simulated raindrop spectra. J. Appl. Meteor. Climatol., 48, 406425, doi:10.1175/2008JAMC2026.1.

    • Search Google Scholar
    • Export Citation
  • Cao, Q., G. Zhang, E. Brandes, T. Schuur, A. Ryzhkov, and K. Ikeda, 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor. Climatol., 47, 22382255, doi:10.1175/2008JAMC1732.1.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., S. A. Rutledge, D. A. Ahijevych, and T. D. Keenan, 2000: Correcting propagation effects in C-band polarimetric radar observations of tropical convection using differential propagation phase. J. Appl. Meteor., 39, 14051433, doi:10.1175/1520-0450(2000)039<1405:CPEICB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., W. A. Cooper, and V. N. Bringi, 1988: Axis ratios and oscillations of raindrops. J. Atmos. Sci., 45, 13231333, doi:10.1175/1520-0469(1988)045<1323:ARAOOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., A. Hou, E. Smith, V. N. Bringi, S. A. Rutledge, E. Gorgucci, W. A. Petersen, and G. Skofronick Jackson, 2008: Potential role of dual-polarization radar in the validation of satellite precipitation measurements: Rationale and opportunities. Bull. Amer. Meteor. Soc., 89, 11271145, doi:10.1175/2008BAMS2177.1.

    • Search Google Scholar
    • Export Citation
  • Fujiyoshi, Y., I. Yamamura, N. Nagumo, K. Nakagawa, K. Muramoto, and T. Shimomai, 2008: The maximum size of raindrops—Can it be a proxy of precipitation climatology? Extended Abstracts, Int. Conf. on Clouds and Precipitation, Cancun, Mexico, International Commission on Clouds and Precipitation, P1.31. [Available online at http://cabernet.atmosfcu.unam.mx/ICCP-2008/abstracts/Program_on_line/Poster_01/Fujiyoshi_extended.pdf.]

    • Search Google Scholar
    • Export Citation
  • Gatlin, P. N., M. Thurai, V. N. Bringi, W. Petersen, D. Wolff, A. Tokay, L. Carey, and M. Wingo, 2015: Searching for large raindrops: A global summary of two-dimensional video disdrometer observations. J. Appl. Meteor. Climatol., 54, 10691089, doi:10.1175/JAMC-D-14-0089.1.

    • Search Google Scholar
    • Export Citation
  • Goddard, J. W. F., and S. M. Cherry, 1984: The ability of dual-polarization radar (copolar linear) to predict rainfall rate and microwave attenuation. Radio Sci., 19, 201208, doi:10.1029/RS019i001p00201.

    • Search Google Scholar
    • Export Citation
  • Goddard, J. W. F., S. M. Cherry, and V. N. Bringi, 1982: Comparison of dual-polarization radar measurements of rain with ground-based disdrometer measurements. J. Appl. Meteor., 21, 252256, doi:10.1175/1520-0450(1982)021<0252:CODPRM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goddard, J. W. F., J. D. Eastment, and J. Tan, 1994: Self-consistent measurements of differential phase and differential reflectivity in rain. Proc. 1994 Int. Geoscience and Remote Sensing Symp., Pasadena, CA, IEEE, 369371.

    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., G. Scarchilli, and V. Chandrasekar, 1999: A procedure to calibrate multiparameter weather radar using properties of the rain medium. IEEE Trans. Geosci. Remote Sens., 37, 269276, doi:10.1109/36.739161.

    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., V. Chandrasekar, V. N. Bringi, and G. Scarchilli, 2002: Estimation of raindrop size distribution parameters from polarimetric radar measurements. J. Atmos. Sci., 59, 23732384, doi:10.1175/1520-0469(2002)059<2373:EORSDP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. L. Rangno, 2004: Super-large raindrops. Geophys. Res. Lett., 31, L13102, doi:10.1029/2004GL020167.

  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement (GPM) Mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Huang, G.-J., V. N. Bringi, and M. Thurai, 2008: Orientation angle distributions of drops after an 80-m fall using a 2D video disdrometer. J. Atmos. Oceanic Technol., 25, 17171723, doi:10.1175/2008JTECHA1075.1.

    • Search Google Scholar
    • Export Citation
  • Jaffrain, J., and A. Berne, 2012: Quantification of the small-scale spatial structure of the raindrop size distribution from a network of disdrometers. J. Appl. Meteor. Climatol., 51, 941953, doi:10.1175/JAMC-D-11-0136.1.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., 1983: Microphysical interpretation of multi-parameter radar measurements in rain. Part I: Interpretation of polarization measurements and estimation of raindrop shapes. J. Atmos. Sci., 40, 17921802, doi:10.1175/1520-0469(1983)040<1792:MIOMPR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., 1994: An alternative approach to estimating rainfall rate by radar using propagation differential phase shift. J. Atmos. Oceanic Technol., 11, 122131, doi:10.1175/1520-0426(1994)011<0122:AAATER>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kamra, A. K., R. V. Bhalwankar, and A. B. Sathe, 1991: Spontaneous breakup of charged and uncharged water drops freely suspended in a wind tunnel. J. Geophys. Res., 96, 17 15917 168, doi:10.1029/91JD01475.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., L. D. Carey, D. S. Zrnić, and P. T. May, 2001: Sensitivity of 5-cm wavelength polarimetric radar variables to raindrop axial ratio and drop size distribution. J. Appl. Meteor., 40, 526545, doi:10.1175/1520-0450(2001)040<0526:SOCWPR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Levenberg, K., 1944: A method for the solution of certain non-linear problems in least squares. Quart. J. Appl. Math., 2, 164168.

  • Marquardt, D., 1963: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math., 11, 431441, doi:10.1137/0111030.

    • Search Google Scholar
    • Export Citation
  • Meischner, P. F., V. N. Bringi, D. Heimann, and H. Höller, 1991: A squall line in southern Germany: Kinematics and precipitation formation as deduced by advanced polarimetric and Doppler radar measurements. Mon. Wea. Rev., 119, 678701, doi:10.1175/1520-0493(1991)119<0678:ASLISG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and Coauthors, 2005: The UAH-NSSTC/WHNT ARMOR C-band dual-polarimetric radar: A unique collaboration in research, education and technology transfer. Extended Abstracts, 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., 12R.4. [Available online at https://ams.confex.com/ams/pdfpapers/96524.pdf.]

  • Petersen, W. A., K. R. Knupp, D. J. Cecil, J. R. Mecikalski, C. Darden, and J. Burks, 2007: The University of Alabama Huntsville THOR center instrumentation: Research and operational collaboration. Extended Abstracts, 33rd Int. Conf. on Radar Meteorology, Cairns, Australia, Amer. Meteor. Soc., 5.1. [Available online at https://ams.confex.com/ams/pdfpapers/123410.pdf.]

  • Petersen, W. A., V. N. Bringi, V. Chandrasekar, S. A. Rutledge, D. B. Wolff, A. Tokay, L. D. Carey, and M. Thurai, 2013: Radar deployments and field sampling for GPM ground validation field campaigns. Proc. 36th Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor. Soc., 179. [Available online at https://ams.confex.com/ams/36Radar/webprogram/Handout/Paper228660/Petersen_etal_RadConf2013_Poster.pdf.]

  • Rauber, R. M., K. V. Beard, and B. M. Andrews, 1991: A mechanism for giant raindrop formation in warm, shallow convective clouds. J. Atmos. Sci., 48, 17911797, doi:10.1175/1520-0469(1991)048<1791:AMFGRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., and D. Zrnić, 2005: Radar polarimetry at S, C, and X bands: Comparative analysis and operational implications. Extended Abstracts, 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., 9R.3. [Available online at https://ams.confex.com/ams/pdfpapers/95684.pdf.]

  • Schönhuber, M., G. Lammer, and W. L. Randeu, 2008: The 2D-video-disdrometer. Precipitation: Advances in Measurement, Estimation and Prediction, S. Michaelides, Ed., Springer, 3–31.

  • Schuur, T. J., A. Ryzhkov, D. S. Zrnić, and M. Schönhuber, 2001: Drop size distributions measured by a 2D video disdrometer: Comparison with dual-polarization radar data. J. Appl. Meteor., 40, 10191034, doi:10.1175/1520-0450(2001)040<1019:DSDMBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 6976, doi:10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., K. Aydin, and H. Direskeneli, 1986: Disdrometer measurements during an intense rainfall event in central Illinois: Implications for differential reflectivity radar observations. J. Climate Appl. Meteor., 25, 835846, doi:10.1175/1520-0450(1986)025<0835:DMDAIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, P. L., Z. Liu, and J. Joss, 1993: A study of sampling-variability effects in raindrop size distributions. J. Appl. Meteor., 32, 12591269, doi:10.1175/1520-0450(1993)032<1259:ASOSVE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tabary, P., G. Vulpiani, J. J. Gourley, A. J. Illingworth, R. J. Thompson, and O. Bousquet, 2009: Unusually high differential attenuation at C-band: Results from a two-year analysis of the French Trappes polarimetric radar data. J. Appl. Meteor. Climatol., 48, 20372053, doi:10.1175/2009JAMC2039.1.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., K. Suzuki, M. Orita, M. Tokuno, and R. de la Mar, 1995: Videosonde observations of precipitation processes in equatorial cloud clusters. J. Meteor. Soc. Japan, 73, 509534.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., and V. N. Bringi, 2005: Drop axis ratios from 2D video disdrometer. J. Atmos. Oceanic Technol., 22, 966978, doi:10.1175/JTECH1767.1.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., G. J. Huang, V. N. Bringi, W. L. Randeu, and M. Schönhuber, 2007: Drop shapes, model comparisons, and calculations of polarimetric radar parameters in rain. J. Atmos. Oceanic Technol., 24, 10191032, doi:10.1175/JTECH2051.1.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., M. Szakáll, V. N. Bringi, K. V. Beard, S. K. Mitra, and S. Borrmann, 2009: Drop shapes and axis ratio distributions: Comparison between 2D video disdrometer and wind-tunnel measurements. J. Atmos. Oceanic Technol., 26, 14271432, doi:10.1175/2009JTECHA1244.1.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., W. A. Petersen, A. Tokay, C. Schultz, and P. Gatlin, 2011: Drop size distribution comparisons between Parsivel and 2-D video disdrometers. Adv. Geosci., 30, 39, doi:10.5194/adgeo-30-3-2011.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775, doi:10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1985: The effects of drop size distribution truncation on rainfall integral parameters and empirical relations. J. Climate Appl. Meteor., 24, 580590, doi:10.1175/1520-0450(1985)024<0580:TEODSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1992: Effects of drop-size-distribution truncation on computer simulations of dual-measurement radar methods. J. Appl. Meteor., 31, 689699, doi:10.1175/1520-0450(1992)031<0689:EODSDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and D. Atlas, 1984: Assessment of the contribution of differential polarization to improved rainfall measurements. Radio Sci., 19, 4957, doi:10.1029/RS019i001p00049.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and D. Atlas, 1998: Rainfall microphysics and radar properties: Analysis methods for drop size spectra. J. Appl. Meteor., 37, 912923, doi:10.1175/1520-0450(1998)037<0912:RMARPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., W. M. Adams, and V. N. Bringi, 1991: Rigorous approach to polarimetric radar modeling of hydrometeor orientation distributions. J. Appl. Meteor., 30, 10531063, doi:10.1175/1520-0450(1991)030<1053:RATPRM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waterman, P. C., 1969: Scattering by dielectric obstacles. Alta Freq., 38(Speciale), 348352.

  • Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830841, doi:10.1109/36.917906.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., T. D. Keenan, L. D. Carey, and P. May, 2000: Sensitivity analysis of polarimetric variables at a 5-cm wavelength in rain. J. Appl. Meteor., 39, 15141526, doi:10.1175/1520-0450(2000)039<1514:SAOPVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 814 513 24
PDF Downloads 284 50 7