Signatures of Hydrometeor Species from Airborne Passive Microwave Data for Frequencies 10–183 GHz

Kenneth D. Leppert II Earth System Science Center, University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Kenneth D. Leppert II in
Current site
Google Scholar
PubMed
Close
and
Daniel J. Cecil NASA Marshall Space Flight Center, Huntsville, Alabama

Search for other papers by Daniel J. Cecil in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Passive microwave brightness temperatures (BTs) collected above severe thunderstorms using the Advanced Microwave Precipitation Radiometer and Conical Scanning Millimeter-Wave Imaging Radiometer during the Midlatitude Continental Convective Clouds Experiment are compared with a hydrometeor identification applied to dual-polarimetric Weather Surveillance Radar-1988 Doppler radar data collected at Vance Air Force Base, Oklahoma (KVNX). The goal of this work is to determine the signatures of various hydrometeor species in terms of BTs measured at frequencies used by the Global Precipitation Measurement mission Microwave Imager. Results indicate that hail is associated with an ice-scattering signature at all frequencies examined, including 10.7 GHz. However, it appears that frequencies ≤ 37.1 GHz are most useful for identifying hail. Low-level (below 2.5 km) hail becomes probable for a BT below 240 K at 19.4 GHz, 170 K at 37.1 GHz, 90 K at 85.5 GHz, 80 K at 89.0 GHz, 100 K at 165.5 GHz, and 100 K at 183.3 ± 7 GHz. Graupel may be distinguished from hail and profiles without any hydrometeor species by its strong scattering signature at higher frequencies (e.g., 165.5 GHz) and its relative lack of scattering at frequencies ≤ 19.4 GHz. There is a clearer distinction between profiles that contain liquid precipitation and profiles without any hydrometeors when the liquid is associated above with hail and/or graupel (i.e., a hydrometeor category with a strong scattering signature) than when the liquid is associated with smaller ice. Near-surface precipitation is much more likely for a 19.4-GHz BT < 250 K, 37.1-GHz BT < 240 K, 89.0-GHz BT < 220 K, and 165.5-GHz BT < 140 K.

Corresponding author address: Kenneth Leppert II, NSSTC, Rm. 4074, 320 Sparkman Dr. Huntsville, AL 35805. E-mail: leppert@nsstc.uah.edu

Abstract

Passive microwave brightness temperatures (BTs) collected above severe thunderstorms using the Advanced Microwave Precipitation Radiometer and Conical Scanning Millimeter-Wave Imaging Radiometer during the Midlatitude Continental Convective Clouds Experiment are compared with a hydrometeor identification applied to dual-polarimetric Weather Surveillance Radar-1988 Doppler radar data collected at Vance Air Force Base, Oklahoma (KVNX). The goal of this work is to determine the signatures of various hydrometeor species in terms of BTs measured at frequencies used by the Global Precipitation Measurement mission Microwave Imager. Results indicate that hail is associated with an ice-scattering signature at all frequencies examined, including 10.7 GHz. However, it appears that frequencies ≤ 37.1 GHz are most useful for identifying hail. Low-level (below 2.5 km) hail becomes probable for a BT below 240 K at 19.4 GHz, 170 K at 37.1 GHz, 90 K at 85.5 GHz, 80 K at 89.0 GHz, 100 K at 165.5 GHz, and 100 K at 183.3 ± 7 GHz. Graupel may be distinguished from hail and profiles without any hydrometeor species by its strong scattering signature at higher frequencies (e.g., 165.5 GHz) and its relative lack of scattering at frequencies ≤ 19.4 GHz. There is a clearer distinction between profiles that contain liquid precipitation and profiles without any hydrometeors when the liquid is associated above with hail and/or graupel (i.e., a hydrometeor category with a strong scattering signature) than when the liquid is associated with smaller ice. Near-surface precipitation is much more likely for a 19.4-GHz BT < 250 K, 37.1-GHz BT < 240 K, 89.0-GHz BT < 220 K, and 165.5-GHz BT < 140 K.

Corresponding author address: Kenneth Leppert II, NSSTC, Rm. 4074, 320 Sparkman Dr. Huntsville, AL 35805. E-mail: leppert@nsstc.uah.edu
Save
  • Adler, R. F., H.-Y. M. Yeh, N. Prasad, W.-K. Tao, and J. Simpson, 1991: Microwave simulations of a tropical rainfall system with a three-dimensional cloud model. J. Appl. Meteor., 30, 924953, doi:10.1175/1520-0450-30.7.924.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., S. Y. Matrosov, A. J. Heymsfield, M.-D. Chou, and D. B. Wolff, 1995: Radar and radiation properties of ice clouds. J. Appl. Meteor., 34, 23292345, doi:10.1175/1520-0450(1995)034<2329:RARPOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., 2009: Passive microwave brightness temperatures as proxies for hailstorms. J. Appl. Meteor. Climatol., 48, 12811286, doi:10.1175/2009JAMC2125.1.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and C. B. Blankenship, 2012: Toward a global climatology of severe hailstorms as estimated by satellite passive microwave imagers. J. Climate, 25, 687703, doi:10.1175/JCLI-D-11-00130.1.

    • Search Google Scholar
    • Export Citation
  • Dolan, B., and S. A. Rutledge, 2009: A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J. Atmos. Oceanic Technol., 26, 20712088, doi:10.1175/2009JTECHA1208.1.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and G. F. Marks, 1995: The development of SSM/I rain-rate retrieval algorithms using ground-based radar measurements. J. Atmos. Oceanic Technol., 12, 755770, doi:10.1175/1520-0426(1995)012<0755:TDOSRR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., J. Beauchamp, D. J. Cecil, and G. M. Heymsfield, 2015: A prototype hail detection algorithm and hail climatology developed with the Advanced Microwave Sounding Unit (AMSU). Atmos. Res., doi:10.1016/j.atmosres.2014.08.010, in press.

    • Search Google Scholar
    • Export Citation
  • Gatlin, P. N., M. Thurai, V. N. Bringi, W. Petersen, D. Wolff, A. Tokay, L. Carey, and M. Wingo, 2015: Searching for large raindrops: A global summary of two-dimensional video disdrometer observations. J. Appl. Meteor. Climatol., 54, 10691089, doi:10.1175/JAMC-D-14-0089.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1977: Precipitation development in stratiform ice clouds: A microphysical and dynamical study. J. Atmos. Sci., 34, 367381, doi:10.1175/1520-0469(1977)034<0367:PDISIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., L. Tian, L. Li, M. McLinden, and J. I. Cervantes, 2013: Airborne radar observations of severe hailstorms: Implications for future spaceborne radar. J. Appl. Meteor. Climatol., 52, 18511867, doi:10.1175/JAMC-D-12-0144.1.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement (GPM) mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, C., D. Cecil, and E. J. Zipser, 2011: Relationships between lightning flash rates and passive microwave brightness temperatures at 85 and 37 GHz over the tropics and subtropics. J. Geophys. Res., 116, D23108, doi:10.1029/2011JD016463.

    • Search Google Scholar
    • Export Citation
  • Liu, H., and V. Chandrasekar, 2000: Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol., 17, 140164, doi:10.1175/1520-0426(2000)017<0140:COHBOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McGaughey, G., E. J. Zipser, R. W. Spencer, and R. E. Hood, 1996: High-resolution passive microwave observations of convective systems over the tropical Pacific Ocean. J. Appl. Meteor., 35, 19211947, doi:10.1175/1520-0450(1996)035<1921:HRPMOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., and E. J. Zipser, 1996a: Defining mesoscale convective systems by their 85-GHz ice-scattering signatures. Bull. Amer. Meteor. Soc., 77, 11791189, doi:10.1175/1520-0477(1996)077<1179:DMCSBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., and E. J. Zipser, 1996b: Mesoscale convective systems defined by their 85-GHz ice scattering signature: Size and intensity comparison over tropical oceans and continents. Mon. Wea. Rev., 124, 24172437, doi:10.1175/1520-0493(1996)124<2417:MCSDBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mugnai, A., E. A. Smith, and G. J. Tripoli, 1993: Foundations for statistical–physical precipitation retrieval from passive microwave satellite measurements. Part II: Emission-source and generalized weighting-function properties of a time-dependent cloud-radiation model. J. Appl. Meteor., 32, 1739, doi:10.1175/1520-0450(1993)032<0017:FFSPRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oye, R., C. Mueller, and S. Smith, 1995: Software for radar translation, visualization, editing, and interpolation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359–361.

  • Ryzhkov, A. V., and D. S. Zrnic, 1995a: Comparison of dual-polarization radar estimators of rain. J. Atmos. Oceanic Technol., 12, 249256, doi:10.1175/1520-0426(1995)012<0249:CODPRE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnic, 1995b: Precipitation and attenuation measurements at a 10-cm wavelength. J. Appl. Meteor., 34, 21212134, doi:10.1175/1520-0450(1995)034<2120:PAAMAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnic, 1996: Rain in shallow and deep convection measured with a polarimetric radar. J. Atmos. Sci., 53, 29892995, doi:10.1175/1520-0469(1996)053<2989:RISADC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., D. S. Zrnic, and B. A. Gordon, 1998: Polarimetric method for ice water content determination. J. Appl. Meteor., 37, 125134, doi:10.1175/1520-0450(1998)037<0125:PMFIWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., A. V. Ryzhkov, D. S. Zrnic, and M. Schonhuber, 2001: Drop size distributions measured by a 2D video disdrometer: Comparison with dual-polarization radar data. J. Appl. Meteor., 40, 10191034, doi:10.1175/1520-0450(2001)040<1019:DSDMBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, E. A., H. J. Cooper, X. Xiang, A. Mugnai, and G. J. Tripoli, 1992: Foundations for statistical–physical precipitation retrieval from passive microwave satellite measurements. Part I: Brightness temperature properties of a time-dependent cloud-radiation model. J. Appl. Meteor., 31, 506531, doi:10.1175/1520-0450(1992)031<0506:FFSPPR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., and D. A. Santek, 1985: Measuring the global distribution of intense convection over land with passive microwave radiometry. J. Climate Appl. Meteor., 24, 860864, doi:10.1175/1520-0450(1985)024<0860:MTGDOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., W. S. Olson, W. Rongzhang, D. W. Martin, J. A. Weinman, and D. A. Santek, 1983: Heavy thunderstorms observed over land by the Nimbus 7 scanning multichannel microwave radiometer. J. Climate Appl. Meteor., 22, 10411046, doi:10.1175/1520-0450(1983)022<1041:HTOOLB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., M. R. Howland, and D. A. Santek, 1987: Severe storm identification with satellite microwave radiometry: An initial investigation with Nimbus-7 SMMR data. J. Climate Appl. Meteor., 26, 749754, doi:10.1175/1520-0450(1987)026<0749:SSIWSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273, doi:10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., R. E. Hood, F. J. LaFontaine, E. A. Smith, R. Platt, J. Galliano, V. L. Griffin, and E. Lobl, 1994: High-resolution imaging of rain systems with the Advanced Microwave Precipitation Radiometer. J. Atmos. Oceanic Technol., 11, 849857, doi:10.1175/1520-0426(1994)011<0849:HRIORS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., D. S. Zrnic, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372, doi:10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thomason, J. W. G., A. J. Illingworth, and V. Marecal, 1995: Density and size distribution of aggregating snow particles inferred from coincident aircraft and radar observations. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 127–129.

  • Toracinta, E. R., D. J. Cecil, E. J. Zipser, and S. W. Nesbitt, 2002: Radar, passive microwave, and lightning characteristics of precipitating systems in the tropics. Mon. Wea. Rev., 130, 802824, doi:10.1175/1520-0493(2002)130<0802:RPMALC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, J. R., P. E. Racette, and J. R. Piepmeier, 2008: A comparison of near-concurrent measurements from the SSMIS and CoSMIR for some selected channels over the frequency range of 50–183 GHz. IEEE Trans. Geosci. Remote Sens., 46, 923933, doi:10.1109/TGRS.2007.904038.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., A. T. C. Chang, M. S. V. Rao, E. B. Rodgers, and J. S. Theon, 1977: A satellite technique for quantitatively mapping rainfall rates over the oceans. J. Appl. Meteor., 16, 551560, doi:10.1175/1520-0450(1977)016<0551:ASTFQM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., A. T. C. Chang, and L. S. Chiu, 1991: Retrieval of monthly rainfall indices from microwave radiometric measurements using probability distribution functions. J. Atmos. Oceanic Technol., 8, 118136, doi:10.1175/1520-0426(1991)008<0118:ROMRIF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 641 336 40
PDF Downloads 282 52 6