Estimating the Fraction of Winter Orographic Precipitation Produced under Conditions Meeting the Seeding Criteria for the Wyoming Weather Modification Pilot Project

Jaclyn M. Ritzman University of Wyoming, Laramie, Wyoming

Search for other papers by Jaclyn M. Ritzman in
Current site
Google Scholar
PubMed
Close
,
Terry Deshler University of Wyoming, Laramie, Wyoming

Search for other papers by Terry Deshler in
Current site
Google Scholar
PubMed
Close
,
Kyoko Ikeda National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Kyoko Ikeda in
Current site
Google Scholar
PubMed
Close
, and
Roy Rasmussen National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Roy Rasmussen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Annual precipitation increases of 10% or more are often quoted for the impact of winter orographic cloud seeding; however, establishing the basis for such values is problematic for two reasons. First, the impact of glaciogenic seeding of candidate orographic storms has not been firmly established. Second, not all winter precipitation is produced by candidate “seedable” storms. Addressing the first question motivated the Wyoming state legislature to fund a multiyear, crossover, randomized cloud-seeding experiment in southeastern Wyoming to quantify the impact of glaciogenic seeding of wintertime orographic clouds. The crossover design requires two barriers, one randomly selected for seeding, for comparisons of seeded and nonseeded precipitation under relatively homogeneous atmospheric conditions. Addressing the second question motivated the work here. The seeding criteria—700-hPa temperatures ≤−8°C, 700-hPa winds between 210° and 315°, and the presence of supercooled liquid water—were applied to eight winters to determine the percent of winter precipitation that may fall under the seeding criteria. Since no observational datasets provide precipitation and all of the atmospheric variables required for this study, a regional climate model dynamical downscaling of historical data over 8 years was used. The accuracy of the model was tested against several measurements, and the small model biases were removed. On average, ~26% of the time between 15 November and 15 April atmospheric conditions were seedable over the barriers in southeastern Wyoming. These seedable conditions were accompanied by precipitation ~12%–14% of the time, indicating that ~27%–30% of the winter precipitation resulted from seedable clouds.

Corresponding author address: Jaclyn Ritzman, 2142 S. Tyler Road, Wichita, KS 67209. E-mail: jaclyn.ritzman@noaa.gov

Current affiliation: NOAA/NWS/Weather Forecast Office, Wichita, Kansas.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Abstract

Annual precipitation increases of 10% or more are often quoted for the impact of winter orographic cloud seeding; however, establishing the basis for such values is problematic for two reasons. First, the impact of glaciogenic seeding of candidate orographic storms has not been firmly established. Second, not all winter precipitation is produced by candidate “seedable” storms. Addressing the first question motivated the Wyoming state legislature to fund a multiyear, crossover, randomized cloud-seeding experiment in southeastern Wyoming to quantify the impact of glaciogenic seeding of wintertime orographic clouds. The crossover design requires two barriers, one randomly selected for seeding, for comparisons of seeded and nonseeded precipitation under relatively homogeneous atmospheric conditions. Addressing the second question motivated the work here. The seeding criteria—700-hPa temperatures ≤−8°C, 700-hPa winds between 210° and 315°, and the presence of supercooled liquid water—were applied to eight winters to determine the percent of winter precipitation that may fall under the seeding criteria. Since no observational datasets provide precipitation and all of the atmospheric variables required for this study, a regional climate model dynamical downscaling of historical data over 8 years was used. The accuracy of the model was tested against several measurements, and the small model biases were removed. On average, ~26% of the time between 15 November and 15 April atmospheric conditions were seedable over the barriers in southeastern Wyoming. These seedable conditions were accompanied by precipitation ~12%–14% of the time, indicating that ~27%–30% of the winter precipitation resulted from seedable clouds.

Corresponding author address: Jaclyn Ritzman, 2142 S. Tyler Road, Wichita, KS 67209. E-mail: jaclyn.ritzman@noaa.gov

Current affiliation: NOAA/NWS/Weather Forecast Office, Wichita, Kansas.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Save
  • Boe, B. A., and A. B. Super, 1986: Wintertime characteristics of supercooled liquid water over the Grand Mesa of western Colorado. J. Wea. Modif., 18, 102107.

    • Search Google Scholar
    • Export Citation
  • Breed, D., R. Rasmussen, C. Weeks, B. Boe, and T. Deshler, 2014: Evaluating winter orographic cloud seeding: Design of the Wyoming Weather Modification Pilot Project (WWMPP). J. Appl. Meteor. Climatol., 53, 282299, doi:10.1175/JAMC-D-13-0128.1.

    • Search Google Scholar
    • Export Citation
  • Chappell, C. F., L. O. Grant, and P. W. Mielke Jr., 1971: Cloud seeding effects on precipitation intensity and duration of wintertime orographic clouds. J. Appl. Meteor., 10, 10061010, doi:10.1175/1520-0450(1971)010<1006:CSEOPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., 1997: Report to North Dakota Atmospheric Resource Board and Weather Modification Incorporated on tests of the ice nucleating ability of aerosols produced by the Lohse airborne generator. Colorado State University Department of Atmospheric Science Rep., 15 pp.

  • Deshler, T., and D. W. Reynolds, 1990: The persistence of seeding effects in a winter orographic cloud seeded with silver iodide burned in acetone. J. Appl. Meteor., 29, 477488, doi:10.1175/1520-0450(1990)029<0477:TPOSEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deshler, T., D. W. Reynolds, and A. W. Huggins, 1990: Physical response of winter orographic clouds over the Sierra Nevada to airborne seeding using dry ice or silver iodide. J. Appl. Meteor., 29, 288330, doi:10.1175/1520-0450(1990)029<0288:PROWOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Elliott, R. D., R. W. Shaffer, A. Court, and J. F. Hannaford, 1978: Randomized cloud seeding in the San Juan Mountains, Colorado. J. Appl. Meteor., 17, 12981318, doi:10.1175/1520-0450(1978)017<1298:RCSITS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gabriel, K. R., 1999: Ratio statistics for randomized experiments in precipitation simulations. J. Appl. Meteor., 38, 290301, doi:10.1175/1520-0450(1999)038<0290:RSFREI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garstang, M., and Coauthors, 2003: Critical Issues in Weather Modification Research. National Academies Press, 123 pp.

  • Garstang, M., R. Bruintjes, R. Serafin, H. Orville, B. Boe, W. Cotton, and J. Warburton, 2005: Weather modification: Finding common ground. Bull. Amer. Meteor. Soc., 86, 647655, doi:10.1175/BAMS-86-5-647.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., Q. Miao, Y. Yang, R. Rasmussen, and D. Breed, 2010: An airborne profiling radar study of the impact of glaciogenic cloud seeding on snowfall from winter orographic clouds. J. Atmos. Sci., 67, 32863302, doi:10.1175/2010JAS3496.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2013: The AgI Seeding Cloud Impact Investigation (ASCII) campaign 2012: Overview and preliminary results. J. Wea. Modif., 45, 2443.

    • Search Google Scholar
    • Export Citation
  • Grant, L. O., and P. W. Mielke, 1967: A randomized cloud seeding experiment at Climax, CO, 1960–1965. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, L. M. Le Cam and J. Neyman Eds., Vol. 5, University of California Press, 115–131.

  • Grant, L. O., and R. E. Elliott, 1974: The cloud seeding temperature window. J. Appl. Meteor., 13, 355363, doi:10.1175/1520-0450(1974)013<0355:TCSTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Griffith, D. A., M. E. Solak, D. P. Yorty, and B. Brinkman, 2007: A level II weather modification feasibility study for winter snowpack augmentation in the Salt and Wyoming Ranges in Wyoming. J. Wea. Modif.,39, 7683.

    • Search Google Scholar
    • Export Citation
  • Hill, G. E., 1974: Precipitation augmentation potential by cloud seeding in the state of Utah. Rep. 428, 45 pp. [Available online at http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1427&context=water_rep.]

  • Hindman, E. E., 1986: Characteristics of supercooled liquid water in clouds at mountaintop sites in the Colorado Rockies. J. Climate Appl. Meteor., 25, 12711279, doi:10.1175/1520-0450(1986)025<1271:COSLWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. L. Rangno, 1979: Comments on the Climax and Wolf Creek Pass cloud seeding experiments. J. Appl. Meteor., 18, 12331237, doi:10.1175/1520-0450(1979)018<1233:COTCAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoover, J. D., N. Doesken, K. Elder, M. Laituri, and G. E. Liston, 2014: Temporal trend analyses of alpine data using North American Regional Reanalysis and in situ data: Temperature, wind speed, precipitation, and derived blowing snow. J. Appl. Meteor. Climatol., 53, 676693, doi:10.1175/JAMC-D-13-092.1.

    • Search Google Scholar
    • Export Citation
  • Ikeda, K., and Coauthors, 2010: Simulation of seasonal snowfall over Colorado. Atmos. Res., 97, 462477, doi:10.1016/j.atmosres.2010.04.010.

    • Search Google Scholar
    • Export Citation
  • Medina, J. G., 2000: The feasibility of operational cloud seeding in the North Platte River basin headwaters to increase mountain snowfall. Bureau of Reclamation Denver Federal Center Technical Service Center Rep., 115 pp. [Available online at https://platteriverprogram.org/PubsAndData/ProgramLibrary/TC-R5%20Feasibility%20of%20Cloud%20Seeding%20in%20North%20Platte%20Headwaters.pdf.]

  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Mielke, P. W., 1979: Comment on “Field experimentation in weather modification.” J. Amer. Stat. Assoc., 74, 8788.

  • Mielke, P. W., L. O. Grant, and C. F. Chappell, 1970: Elevation and spatial variation effects of wintertime orographic cloud seeding. J. Appl. Meteor., 9, 476488, doi:10.1175/1520-0450(1970)009<0476:EASVEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mielke, P. W., L. O. Grant, and C. F. Chappell, 1971: An independent replication of the climax wintertime orographic cloud seeding experiment. J. Appl. Meteor., 10, 11981212, doi:10.1175/1520-0450(1971)010<1198:AIROTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mielke, P. W., G. W. Brier, L. O. Grant, G. J. Mulvey, and P. N. Rosenzweig, 1981: A statistical reanalysis of the replicated Climax I and II wintertime orographic cloud seeding experiments. J. Appl. Meteor., 20, 643659, doi:10.1175/1520-0450(1981)020<0643:ASROTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mooney, M. L., and G. W. Lunn, 1969: The area of maximum effect resulting from the Lake Almanor randomized cloud seeding experiment. J. Appl. Meteor., 8, 6874, doi:10.1175/1520-0450(1969)008<0068:TAOMER>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morel-Seytoux, H. J., and F. Saheli, 1973: Test of runoff increase due to precipitation management for the Colorado River Basin Pilot Project. J. Appl. Meteor., 12, 322337, doi:10.1175/1520-0450(1973)012<0322:TORIDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pokharel, B., and B. Geerts, 2014: The impact of glaciogenic seeding on snowfall from shallow orographic clouds over the Medicine Bow Mountains in Wyoming. J. Wea. Modif., 46, 828.

    • Search Google Scholar
    • Export Citation
  • Pokharel, B., B. Geerts, and X. Jing, 2014a: The impact of ground-based glaciogenic seeding on orographic clouds and precipitation: A multisensor case study. J. Appl. Meteor. Climatol, 53, 890909, doi:10.1175/JAMC-D-13-0290.1.

    • Search Google Scholar
    • Export Citation
  • Pokharel, B., B. Geerts, X. Jing, K. Friedrich, J. Aikins, D. Breed, R. Rasmussen, and A. Huggins, 2014b: The impact of ground-based glaciogenic seeding on clouds and precipitation over mountains: A multi-sensor case study of shallow precipitating orographic cumuli. Atmos. Res., 147–148, 162182, doi:10.1016/j.atmosres.2014.05.014.

    • Search Google Scholar
    • Export Citation
  • Politovich, M. K., and G. Vali, 1983: Observations of liquid water in orographic clouds over Elk Mountain. J. Atmos. Sci., 40, 13001312, doi:10.1175/1520-0469(1983)040<1300:OOLWIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rangno, A. L., 1979: A reanalysis of the Wolf Creek Pass cloud seeding experiment. J. Appl. Meteor., 18, 579605, doi:10.1175/1520-0450(1979)018<0579:AROTWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rangno, A. L., 1986: How good are our conceptual models of orographic cloud seeding? Precipitation EnhancementA Scientific Challenge, Meteor. Monogr., No. 43, Amer. Meteor. Soc., 115, doi:10.1175/0065-9401-21.43.115.

  • Rangno, A. L., and P. V. Hobbs, 1987: A reevaluation of the Climax cloud seeding experiments using NOAA published data. J. Climate Appl. Meteor., 26, 757762, doi:10.1175/1520-0450(1987)026<0757:AROTCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rangno, A. L., and P. V. Hobbs, 1993: Further analysis of the Climax cloud-seeding experiments. J. Appl. Meteor., 32, 18371847, doi:10.1175/1520-0450(1993)032<1837:FAOTCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2001: Weather support to deicing decision making (WSDDM): A winter weather nowcasting system. Bull. Amer. Meteor. Soc., 82, 579595, doi:10.1175/1520-0477(2001)082<0579:WSTDDM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048, doi:10.1175/2010JCLI3985.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2012: How well are we measuring snow? The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811829, doi:10.1175/BAMS-D-11-00052.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2014: Climate change impacts on the water balance of the Colorado Headwaters: High-resolution regional climate model simulations. J. Hydrometeor., 15, 10911116, doi:10.1175/JHM-D-13-0118.1.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., L. O. Grant, D. X. Feng, and J. B. Snider, 1986: The characteristics and distribution of cloud water over the mountains of northern Colorado during wintertime storms. Part I: Temporal variations. J. Climate Appl. Meteor., 25, 468488, doi:10.1175/1520-0450(1986)025<0468:TCADOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rhea, J. O., 1978: An orographic model for hydrometeorological use. Ph.D. thesis, Colorado State University Atmospheric Paper 287, 198 pp.

  • Rhea, J. O., 1983: Comments on “A statistical reanalysis of the replicated Climax I and II wintertime orographic cloud seeding experiment.” J. Climate Appl. Meteor., 22, 14751481, doi:10.1175/1520-0450(1983)022<1475:COSROT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ritzman, J. M., 2013: Estimates of the fraction of precipitation seedable under application of the Wyoming Weather Modification Pilot Project. M.S. thesis, Dept. of Atmospheric Science, University of Wyoming, 114 pp.

  • Schaefer, V. J., 1946: The production of ice crystals in a cloud of supercooled water droplets. Science, 104, 457459, doi:10.1126/science.104.2707.457.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. P. Clark, R. L. Armstrong, D. A. McGinnis, and R. S. Pulwarty, 1999: Characteristics of the western United Stated snowpack from snowpack telemetry (SNOTEL) data. Water Resour. Res., 35, 21452160, doi:10.1029/1999WR900090.

    • Search Google Scholar
    • Export Citation
  • Super, A. B., and J. A. Heimbach, 1983: Evaluation of the Bridger Range winter cloud seeding experiment using control gages. J. Climate Appl. Meteor., 22, 19892011, doi:10.1175/1520-0450(1983)022<1989:EOTBRW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Vonnegut, B., 1947: The nucleation of ice formation by silver iodide. J. Appl. Phys., 18, 593595, doi:10.1063/1.1697813.

  • Weather Modification Incorporated, 2005: Wyoming level II weather modification feasibility study. Final Report to the Wyoming Water Development Commission, Cheyenne, WY, 151 pp. [Available online at http://charybdis.wrds.uwyo.edu/weathermod/Report.pdf.]

  • Yang, D., B. E. Goodison, J. R. Metcalfe, V. S. Golubev, R. Bates, T. Pangburn, and C. L. Hanson, 1998: Accuracy of NWS 8” standard nonrecording precipitation gauges: Results and application of WMO intercomparison. J. Atmos. Oceanic Technol., 15, 5468, doi:10.1175/1520-0426(1998)015<0054:AONSNP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1868 1018 32
PDF Downloads 412 83 17