Effects of Snow Cover and Atmospheric Stability on Winter PM2.5 Concentrations in Western U.S. Valleys

Mark C. Green Desert Research Institute, Reno, Nevada

Search for other papers by Mark C. Green in
Current site
Google Scholar
PubMed
Close
,
Judith C. Chow Desert Research Institute, Reno, Nevada

Search for other papers by Judith C. Chow in
Current site
Google Scholar
PubMed
Close
,
John G. Watson Desert Research Institute, Reno, Nevada

Search for other papers by John G. Watson in
Current site
Google Scholar
PubMed
Close
,
Kevin Dick Washoe County Health District, Reno, Nevada

Search for other papers by Kevin Dick in
Current site
Google Scholar
PubMed
Close
, and
Daniel Inouye Washoe County Health District, Reno, Nevada

Search for other papers by Daniel Inouye in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Many populated valleys in the western United States experience increased concentrations of particulate matter with diameter of less than 2.5 μm (PM2.5) during winter stagnation conditions. Further study into the chemical components composing wintertime PM2.5 and how the composition and level of wintertime PM2.5 are related to meteorological conditions can lead to a better understanding of the causes of high PM2.5 and aid in development and application of emission controls. The results can also aid in short-term air-pollution forecasting and implementation of periodic emission controls such as burning bans. This study examines relationships between PM2.5 concentrations and wintertime atmospheric stability (defined by heat deficit) during snow-covered and snow-free conditions from 2000 to 2013 for five western U.S. urbanizations: Salt Lake City, Utah; Reno, Nevada; Boise, Idaho; Missoula, Montana; and Spokane, Washington. Radiosonde data were used where available to calculate daily heat deficit, which was compared with PM2.5 concentration for days with snow cover and days with no snow cover. Chemically speciated PM2.5 data were compared for snow-cover and snow-free days to see whether the chemical abundances varied by day category. Wintertime PM2.5 levels were highly correlated with heat deficit for all cities except Spokane, where the airport sounding does not represent the urban valley. For a given static stability, snow-cover days experienced higher PM2.5 levels than did snow-free days, mainly because of enhanced ammonium nitrate concentrations. Normalizing average PM2.5 to the heat deficit reduced year-to-year PM2.5 variability, resulting in stronger downward trends, mostly because of reduced carbonaceous aerosol concentrations. The study was limited to western U.S. cities, but similar results are expected for other urban areas in mountainous terrain with cold, snowy winters.

Denotes Open Access content.

Corresponding author address: Mark C. Green, 2215 Raggio Parkway, Reno, NV 89512. E-mail: green@dri.edu

Abstract

Many populated valleys in the western United States experience increased concentrations of particulate matter with diameter of less than 2.5 μm (PM2.5) during winter stagnation conditions. Further study into the chemical components composing wintertime PM2.5 and how the composition and level of wintertime PM2.5 are related to meteorological conditions can lead to a better understanding of the causes of high PM2.5 and aid in development and application of emission controls. The results can also aid in short-term air-pollution forecasting and implementation of periodic emission controls such as burning bans. This study examines relationships between PM2.5 concentrations and wintertime atmospheric stability (defined by heat deficit) during snow-covered and snow-free conditions from 2000 to 2013 for five western U.S. urbanizations: Salt Lake City, Utah; Reno, Nevada; Boise, Idaho; Missoula, Montana; and Spokane, Washington. Radiosonde data were used where available to calculate daily heat deficit, which was compared with PM2.5 concentration for days with snow cover and days with no snow cover. Chemically speciated PM2.5 data were compared for snow-cover and snow-free days to see whether the chemical abundances varied by day category. Wintertime PM2.5 levels were highly correlated with heat deficit for all cities except Spokane, where the airport sounding does not represent the urban valley. For a given static stability, snow-cover days experienced higher PM2.5 levels than did snow-free days, mainly because of enhanced ammonium nitrate concentrations. Normalizing average PM2.5 to the heat deficit reduced year-to-year PM2.5 variability, resulting in stronger downward trends, mostly because of reduced carbonaceous aerosol concentrations. The study was limited to western U.S. cities, but similar results are expected for other urban areas in mountainous terrain with cold, snowy winters.

Denotes Open Access content.

Corresponding author address: Mark C. Green, 2215 Raggio Parkway, Reno, NV 89512. E-mail: green@dri.edu
Save
  • Allen, G. A., P. J. Miller, L. J. Rector, M. Brauer, and J. G. Su, 2011: Characterization of valley winter woodsmoke concentrations in northern NY using highly time-resolved measurements. Aerosol Air Qual. Res., 11, 519530, doi:10.4209/aaqr.2011.03.0031.

    • Search Google Scholar
    • Export Citation
  • Chen, L.-W. A., J. G. Watson, J. C. Chow, and K. L. Magliano, 2007: Quantifying PM2.5 source contributions for the San Joaquin Valley with multivariate receptor models. Environ. Sci. Technol., 41, 28182826, doi:10.1021/es0525105.

    • Search Google Scholar
    • Export Citation
  • Chen, L.-W. A., J. C. Chow, J. G. Watson, and B. A. Schichtel, 2012a: Consistency of long-term elemental carbon trends from thermal and optical measurements in the IMPROVE network. Atmos. Meas. Tech., 5, 23292338, doi:10.5194/amt-5-2329-2012.

    • Search Google Scholar
    • Export Citation
  • Chen, L.-W. A., J. G. Watson, J. C. Chow, M. C. Green, D. Inouye, and K. Dick, 2012b: Wintertime particulate pollution episodes in an urban valley of the western U.S.: A case study. Atmos. Chem. Phys., 12, 10 05110 064, doi:10.5194/acp-12-10051-2012.

    • Search Google Scholar
    • Export Citation
  • Chow, J. C., J. G. Watson, L.-W. A. Chen, M.-C. O. Chang, N. F. Robinson, D. L. Trimble, and S. D. Kohl, 2007a: The IMPROVE_A temperature protocol for thermal/optical carbon analysis: Maintaining consistency with a long-term database. J. Air Waste Manage. Assoc., 57, 10141023, doi:10.3155/1047-3289.57.9.1014.

    • Search Google Scholar
    • Export Citation
  • Chow, J. C., J. G. Watson, D. H. Lowenthal, L.-W. A. Chen, B. Zielinska, L. R. Mazzoleni, and K. L. Magliano, 2007b: Evaluation of organic markers for chemical mass balance source apportionment at the Fresno supersite. Atmos. Chem. Phys., 7, 17411754, doi:10.5194/acp-7-1741-2007.

    • Search Google Scholar
    • Export Citation
  • Chow, J. C., J. G. Watson, L.-W. A. Chen, J. Rice, and N. H. Frank, 2010: Quantification of PM2.5 organic carbon sampling artifacts in US networks. Atmos. Chem. Phys., 10, 52235239, doi:10.5194/acp-10-5223-2010.

    • Search Google Scholar
    • Export Citation
  • Chow, J. C., and Coauthors, 2011: Quality assurance and quality control for thermal/optical analysis of aerosol samples for organic and elemental carbon. Anal. Bioanal. Chem., 401, 31413152, doi:10.1007/s00216-011-5103-3.

    • Search Google Scholar
    • Export Citation
  • EPA, 2013: 40 CFR Parts 50, 51, 52, 53, and 58-National ambient air quality standards for particulate matter; final rule. Federal Register, Vol. 78, No. 10, 3086–3286. [Available online at http://www.gpo.gov/fdsys/pkg/FR-2013-01-15/pdf/2012-30946.pdf.]

  • Gillies, R. R., S. Y. Wang, and M. R. Booth, 2010: Atmospheric scale interaction on wintertime Intermountain West low-level inversions. Wea. Forecasting, 25, 11961210, doi:10.1175/2010WAF2222380.1.

    • Search Google Scholar
    • Export Citation
  • Green, M. C., L.-W. A. Chen, D. W. DuBois, and J. V. Molenar, 2012: Fine particulate matter and visibility in the Lake Tahoe basin: Chemical characterization, trends, and source apportionment. J. Air Waste Manage. Assoc., 62, 953965, doi:10.1080/10962247.2012.690362.

    • Search Google Scholar
    • Export Citation
  • Hand, J. L., B. A. Schichtel, W. C. Malm, and N. H. Frank, 2013: Spatial and temporal trends in PM2.5 organic and elemental carbon across the United States. Adv. Meteor., 2013, 367674, doi:10.1155/2013/367674.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. E., R. Kotchenruther, R. Kuprov, and G. D. Silcox, 2013: Receptor model source attributions for Utah’s Salt Lake City airshed and the impacts of wintertime secondary ammonium nitrate and ammonium chloride aerosol. J. Air Waste Manage. Assoc., 63, 575590, doi:10.1080/10962247.2013.774819.

    • Search Google Scholar
    • Export Citation
  • Lurmann, F. W., S. G. Brown, M. C. McCarthy, and P. T. Roberts, 2006: Processes influencing secondary aerosol formation in the San Joaquin Valley during winter. J. Air Waste Manage. Assoc., 56, 16791693, doi:10.1080/10473289.2006.10464573.

    • Search Google Scholar
    • Export Citation
  • Murphy, D. M., J. C. Chow, E. M. Leibensperger, W. C. Malm, M. L. Pitchford, B. A. Schichtel, J. G. Watson, and W. H. White, 2011: Decreases in elemental carbon and fine particle mass in the United States. Atmos. Chem. Phys., 11, 46794686, doi:10.5194/acp-11-4679-2011.

    • Search Google Scholar
    • Export Citation
  • Peterson, M. R., and M. H. Richards, 2002: Thermal-optical-transmittance analysis for organic, elemental, carbonate, total carbon, and OCX2 in PM2.5 by the EPA/NIOSH method. Proc. Symposium on Air Quality Measurement Methods and Technology-2002, San Francisco, CA, Air and Waste Management Association, 83-1–83-19.

  • Pitchford, M. L., W. C. Malm, B. A. Schichtel, N. K. Kumar, D. H. Lowenthal, and J. L. Hand, 2007: Revised algorithm for estimating light extinction from IMPROVE particle speciation data. J. Air Waste Manage. Assoc., 57, 13261336, doi:10.3155/1047-3289.57.11.1326.

    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., and D. J. Stensrud, 2009: Synoptic-scale flow and valley cold pool evolution in the western United States. Wea. Forecasting, 24, 16251643, doi:10.1175/2009WAF2222234.1.

    • Search Google Scholar
    • Export Citation
  • Rinehart, L. R., E. M. Fujita, J. C. Chow, K. L. Magliano, and B. Zielinska, 2006: Spatial distribution of PM2.5 associated organic compounds in central California. Atmos. Environ., 40, 290303, doi:10.1016/j.atmosenv.2005.09.035.

    • Search Google Scholar
    • Export Citation
  • Schreuder, A. B., T. V. Larson, L. Sheppard, and C. S. Claiborn, 2006: Ambient woodsmoke and associated respiratory emergency department visits in Spokane, Washington. Int. J. Occup. Environ. Health, 12, 147153, doi:10.1179/oeh.2006.12.2.147.

    • Search Google Scholar
    • Export Citation
  • Silcox, G. D., K. E. Kelly, E. T. Crosman, C. D. Whiteman, and B. L. Allen, 2012: Wintertime PM2.5 concentrations during persistent, multi-day cold-air pools in a mountain valley. Atmos. Environ., 46, 1724, doi:10.1016/j.atmosenv.2011.10.041.

    • Search Google Scholar
    • Export Citation
  • Stelson, A. W., and J. H. Seinfeld, 1982: Relative humidity and temperature dependence of the ammonium nitrate dissociation constant. Atmos. Environ., 16, 983992, doi:10.1016/0004-6981(82)90184-6.

    • Search Google Scholar
    • Export Citation
  • Theil, H., 1950a: A rank-invariant method of linear and polynomial regression analysis I. Nederl. Akad. Wetensch. Proc., 53, 386392.

  • Theil, H., 1950b: A rank-invariant method of linear and polynomial regression analysis II. Nederl. Akad. Wetensch. Proc., 53, 521525.

    • Search Google Scholar
    • Export Citation
  • Theil, H., 1950c: A rank-invariant method of linear and polynomial regression analysis III. Nederl. Akad. Wetensch. Proc., 53, 13971412.

    • Search Google Scholar
    • Export Citation
  • Wang, S. Y., R. R. Gillies, R. Martin, R. E. Davies, and M. R. Booth, 2012: Connecting subseasonal movements of the winter mean ridge in western North America to inversion climatology in Cache Valley, Utah. J. Appl. Meteor. Climatol., 51, 617627, doi:10.1175/JAMC-D-11-0101.1.

    • Search Google Scholar
    • Export Citation
  • Ward, T., and T. Lange, 2010: The impact of wood smoke on ambient PM2.5 in northern Rocky Mountain valley communities. Environ. Pollut., 158, 723729, doi:10.1016/j.envpol.2009.10.016.

    • Search Google Scholar
    • Export Citation
  • Ward, T., R. F. Hamilton, and G. C. Smith, 2004: The Missoula, Montana PM2.5 speciation study—Seasonal average concentrations. Atmos. Environ., 38, 63716379, doi:10.1016/j.atmosenv.2004.07.012.

    • Search Google Scholar
    • Export Citation
  • Ward, T., B. Trost, J. Conner, J. Flanagan, and R. K. M. Jayanty, 2012: Source apportionment of PM2.5 in a subarctic airshed—Fairbanks, Alaska. Aerosol Air Qual. Res., 12, 536543, doi:10.4209/aaqr.2011.11.0208.

    • Search Google Scholar
    • Export Citation
  • Watson, J. G., 2002: Visibility: Science and regulation. J. Air Waste Manage. Assoc., 52, 628713, doi:10.1080/10473289.2002.10470813.

    • Search Google Scholar
    • Export Citation
  • Watson, J. G., and J. C. Chow, 2002: A wintertime PM2.5 episode at the Fresno, CA, supersite. Atmos. Environ., 36, 465475, doi:10.1016/S1352-2310(01)00309-0.

    • Search Google Scholar
    • Export Citation
  • Watson, J. G., J. C. Chow, F. W. Lurmann, and S. Musarra, 1994: Ammonium nitrate, nitric acid, and ammonia equilibrium in wintertime Phoenix, Arizona. J. Air Waste Manage. Assoc., 44, 405412, doi:10.1080/1073161X.1994.10467262.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., and T. B. McKee, 1977: Observations of vertical atmospheric structure in a deep mountain valley. Arch. Meteor. Geophys. Bioklimatol., 26A, 3950, doi:10.1007/BF02246534.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., and T. B. McKee, 1978: Air pollution implications of inversion descent in mountain valleys. Atmos. Environ., 12, 21512158, doi:10.1016/0004-6981(78)90170-1.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., X. Bian, and S. Zhong, 1999: Wintertime evolution of the temperature inversion in the Colorado Plateau basin. J. Appl. Meteor., 38, 11031117, doi:10.1175/1520-0450(1999)038<1103:WEOTTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., S. W. Hoch, J. D. Horel, and A. Charland, 2014: Relationship between particulate air pollution and meteorological variables in Utah's Salt Lake Valley. Atmos. Environ., 94, 742753, doi:10.1016/j.atmosenv.2014.06.012.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2538 1410 67
PDF Downloads 745 210 16