The Impact of Parameterized Convection on the Simulation of Crop Processes

L. Garcia-Carreras Department of Meteorology and the Bert Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden, and Institute for Climate and Atmospheric Sciences, University of Leeds, Leeds, United Kingdom

Search for other papers by L. Garcia-Carreras in
Current site
Google Scholar
PubMed
Close
,
A. J. Challinor Institute for Climate and Atmospheric Sciences, University of Leeds, Leeds, United Kingdom

Search for other papers by A. J. Challinor in
Current site
Google Scholar
PubMed
Close
,
B. J. Parkes Laboratoire d’Océanographie et du Climat, Université Pierre et Marie Curie, Paris, France

Search for other papers by B. J. Parkes in
Current site
Google Scholar
PubMed
Close
,
C. E. Birch Met Office, University of Leeds, Leeds, United Kingdom

Search for other papers by C. E. Birch in
Current site
Google Scholar
PubMed
Close
,
K. J. Nicklin Institute for Climate and Atmospheric Sciences, University of Leeds, Leeds, United Kingdom

Search for other papers by K. J. Nicklin in
Current site
Google Scholar
PubMed
Close
, and
D. J. Parker Institute for Climate and Atmospheric Sciences, University of Leeds, Leeds, United Kingdom

Search for other papers by D. J. Parker in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Global climate and weather models are a key tool for the prediction of future crop productivity, but they all rely on parameterizations of atmospheric convection, which often produce significant biases in rainfall characteristics over the tropics. The authors evaluate the impact of these biases by driving the General Large Area Model for annual crops (GLAM) with regional-scale atmospheric simulations of one cropping season over West Africa at different resolutions, with and without a parameterization of convection, and compare these with a GLAM run driven by observations. The parameterization of convection produces too light and frequent rainfall throughout the domain, as compared with the short, localized, high-intensity events in the observations and in the convection-permitting runs. Persistent light rain increases surface evaporation, and much heavier rainfall is required to trigger planting. Planting is therefore delayed in the runs with parameterized convection and occurs at a seasonally cooler time, altering the environmental conditions experienced by the crops. Even at high resolutions, runs driven by parameterized convection underpredict the small-scale variability in yields produced by realistic rainfall patterns. Correcting the distribution of rainfall frequencies and intensities before use in crop models will improve the process-based representation of the crop life cycle, increasing confidence in the predictions of crop yield. The rainfall biases described here are a common feature of parameterizations of convection, and therefore the crop-model errors described are likely to occur when using any global weather or climate model, thus remaining hidden when using climate-model intercomparisons to evaluate uncertainty.

Denotes Open Access content.

This article is licensed under a Creative Commons Attribution 4.0 license.

Corresponding author address: L. Garcia-Carreras, Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom. E-mail: l.garcia-carreras@leeds.ac.uk

Abstract

Global climate and weather models are a key tool for the prediction of future crop productivity, but they all rely on parameterizations of atmospheric convection, which often produce significant biases in rainfall characteristics over the tropics. The authors evaluate the impact of these biases by driving the General Large Area Model for annual crops (GLAM) with regional-scale atmospheric simulations of one cropping season over West Africa at different resolutions, with and without a parameterization of convection, and compare these with a GLAM run driven by observations. The parameterization of convection produces too light and frequent rainfall throughout the domain, as compared with the short, localized, high-intensity events in the observations and in the convection-permitting runs. Persistent light rain increases surface evaporation, and much heavier rainfall is required to trigger planting. Planting is therefore delayed in the runs with parameterized convection and occurs at a seasonally cooler time, altering the environmental conditions experienced by the crops. Even at high resolutions, runs driven by parameterized convection underpredict the small-scale variability in yields produced by realistic rainfall patterns. Correcting the distribution of rainfall frequencies and intensities before use in crop models will improve the process-based representation of the crop life cycle, increasing confidence in the predictions of crop yield. The rainfall biases described here are a common feature of parameterizations of convection, and therefore the crop-model errors described are likely to occur when using any global weather or climate model, thus remaining hidden when using climate-model intercomparisons to evaluate uncertainty.

Denotes Open Access content.

This article is licensed under a Creative Commons Attribution 4.0 license.

Corresponding author address: L. Garcia-Carreras, Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom. E-mail: l.garcia-carreras@leeds.ac.uk
Save
  • Baron, C., B. Sultan, M. Balme, B. Sarr, S. Traore, T. Lebel, S. Janicot, and M. Dingkuhn, 2005: From GCM grid cell to agricultural plot: Scale issues affecting modelling of climate impact. Philos. Trans. Roy. Soc. London, 360, 20952108, doi:10.1098/rstb.2005.1741.

    • Search Google Scholar
    • Export Citation
  • Berg, A., B. Sultan, and N. de Noblet-Ducoudré, 2010: What are the dominant features of rainfall leading to realistic large-scale crop yield simulations in West Africa? Geophys. Res. Lett.,37, L05405, doi:10.1029/2009GL041923.

  • Bhatnagar-Mathur, P., J. S. Rao, V. Vadez, and K. K. Sharma, 2009: Transgenic strategies for improved drought tolerance in legumes of semi-arid tropics. J. Crop Improv., 24, 92111, doi:10.1080/15427520903337095.

    • Search Google Scholar
    • Export Citation
  • Birch, C. E., D. J. Parker, J. H. Marsham, D. Copsey, and L. Garcia-Carreras, 2014: A seamless assessment of the role of convection in the water cycle of the West African monsoon. J. Geophys. Res. Atmos., 119, 28902912, doi:10.1002/2013JD020887.

    • Search Google Scholar
    • Export Citation
  • Challinor, A. J., and T. R. Wheeler, 2008: Crop yield reduction in the tropics under climate change: Processes and uncertainties. Agric. For. Meteor., 148, 343356, doi:10.1016/j.agrformet.2007.09.015.

    • Search Google Scholar
    • Export Citation
  • Challinor, A. J., T. R. Wheeler, P. Q. Craufurd, J. M. Slingo, and D. I. F. Grimes, 2004: Design and optimisation of a large-area process-based model for annual crops. Agric. For. Meteor., 124, 99120, doi:10.1016/j.agrformet.2004.01.002.

    • Search Google Scholar
    • Export Citation
  • Challinor, A. J., T. R. Wheeler, C. Garforth, P. Craufurd, and A. Kassam, 2007: Assessing the vulnerability of food crop systems in Africa to climate change. Climatic Change, 83, 381399, doi:10.1007/s10584-007-9249-0.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2007: Regional climate projections. Climate Change 2007: The Physical Science Basis, Cambridge University Press, 847–940.

  • Cooper, P. J. M., J. Dimes, K. P. C. Rao, B. Shapiro, B. Shiferaw, and S. Twomlow, 2008: Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: An essential first step in adapting to future climate change? Agric. Ecosyst. Environ., 126, 2435, doi:10.1016/j.agee.2008.01.007.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

  • Dai, A., and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the Community Climate System Model. J. Climate, 17, 930951, doi:10.1175/1520-0442(2004)017<0930:TDCAID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Geiger, B., C. Meurey, D. Lajas, L. Franchistéguy, D. Carrer, and J.-L. Roujean, 2008: Near real-time provision of downwelling shortwave radiation estimates derived from satellite observations. Meteor. Appl., 15, 411420, doi:10.1002/met.84.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118, 14831506, doi:10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gregory, P. J., J. S. I. Ingram, and M. Brklacich, 2005: Climate change and food security. Philos. Trans. Roy. Soc. London, 360B, 21392148, doi:10.1098/rstb.2005.1745.

    • Search Google Scholar
    • Export Citation
  • Hansen, J. W., and J. W. Jones, 2000: Scaling-up crop models for climate variability applications. Agric. Syst., 65, 4372, doi:10.1016/S0308-521X(00)00025-1.

    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., S. J. Woolnough, and G. M. S. Lister, 2012: Precipitation distributions for explicit versus parametrized convection in a large-domain high-resolution tropical case study. Quart. J. Roy. Meteor. Soc., 138, 16921708, doi:10.1002/qj.1903.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 38–55, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Ines, A. V. M., and J. W. Hansen, 2006: Bias correction of daily GCM rainfall for crop simulation studies. Agric. For. Meteor., 138, 4453, doi:10.1016/j.agrformet.2006.03.009.

    • Search Google Scholar
    • Export Citation
  • Ingram, K. T., M. C. Roncoli, and P. H. Kirshen, 2002: Opportunities and constraints for farmers of West Africa to use seasonal precipitation forecasts with Burkina Faso as a case study. Agric. Syst., 74, 331349, doi:10.1016/S0308-521X(02)00044-6.

    • Search Google Scholar
    • Export Citation
  • Jobard, I., F. Chopin, J. C. Berges, and R. Roca, 2011: An intercomparison of 10-day satellite precipitation products during West African monsoon. Int. J. Remote Sens., 32, 23532376, doi:10.1080/01431161003698286.

    • Search Google Scholar
    • Export Citation
  • Knox, J., T. Hess, A. Daccache, and T. Wheeler, 2012: Climate change impacts on crop productivity in Africa and South Asia. Environ. Res. Lett., 7, 034032, doi:10.1088/1748-9326/7/3/034032.

    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., M. B. Burke, C. Tebaldi, M. D. Mastrandrea, W. P. Falcon, and R. L. Naylor, 2008: Prioritizing climate change adaptation needs for food security in 2030. Science, 319, 607610, doi:10.1126/science.1152339.

    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., G. L. Hammer, G. McLean, C. Messina, M. J. Roberts, and W. Schlenker, 2013: The critical role of extreme heat for maize production in the United States. Nat. Climate Change, 3, 497501, doi:10.1038/nclimate1832.

    • Search Google Scholar
    • Export Citation
  • Mathon, V., H. Laurent, and T. Lebel, 2002: Mesoscale convective system rainfall in the Sahel. J. Appl. Meteor., 41, 10811092, doi:10.1175/1520-0450(2002)041<1081:MCSRIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., C. Rosenzweig, and R. Goldberg, 1996: The effect of changes in daily and interannual climatic variability on CERES-Wheat: A sensitivity study. Climatic Change, 32, 257292, doi:10.1007/BF00142465.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 2013: The multiscale organization of moist convection and the intersection of weather and climate. Climate Dynamics: Why Does Climate Vary? Geophys. Monogr., Vol. 189, Amer. Geophys. Union, 3–26.

  • Nicklin, K., 2013: Seasonal crop yield forecasting in semi-arid West Africa. Ph.D. dissertation, University of Leeds, 346 pp.

  • Parker, D. J., and Coauthors, 2008: The AMMA radiosonde program and its implications for the future of atmospheric monitoring over Africa. Bull. Amer. Meteor. Soc., 89, 10151027, doi:10.1175/2008BAMS2436.1.

    • Search Google Scholar
    • Export Citation
  • Pearson, K. J., R. J. Hogan, R. P. Allan, G. M. S. Lister, and C. E. Holloway, 2010: Evaluation of the model representation of the evolution of convective systems using satellite observations of outgoing longwave radiation. J. Geophys. Res., 115, D20206, doi:10.1029/2010JD014265.

    • Search Google Scholar
    • Export Citation
  • Pearson, K. J., G. M. S. Lister, C. E. Birch, R. P. Allan, R. J. Hogan, and S. J. Woolnough, 2014: Modelling the diurnal cycle of tropical convection across the ‘grey zone.’ Quart. J. Roy. Meteor. Soc., 140, 491499, doi:10.1002/qj.2145.

    • Search Google Scholar
    • Export Citation
  • Portmann, F. T., S. Siebert, and P. Döll, 2010: MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Global Biogeochem. Cycles, 24, GB1011, doi:10.1029/2008GB003435.

    • Search Google Scholar
    • Export Citation
  • Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 15471564, doi:10.1175/BAMS-84-11-1547.

    • Search Google Scholar
    • Export Citation
  • Riha, S. J., D. S. Wilks, and P. Simoens, 1996: Impact of temperature and precipitation variability on crop model predictions. Climatic Change, 32, 293311, doi:10.1007/BF00142466.

    • Search Google Scholar
    • Export Citation
  • Rosenzweig, C., and Coauthors, 2014: Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. USA, 111, 32683273, doi:10.1073/pnas.1222463110.

    • Search Google Scholar
    • Export Citation
  • Sacks, W. J., D. Deryng, J. A. Foley, and N. Ramankutty, 2010: Crop planting dates: An analysis of global patterns. Global Ecol. Biogeogr., 19, 607620.

    • Search Google Scholar
    • Export Citation
  • Schlenker, W., and M. J. Roberts, 2009: Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. USA, 106, 15 59415 598, doi:10.1073/pnas.0906865106.

    • Search Google Scholar
    • Export Citation
  • Schlenker, W., and D. B. Lobell, 2010: Robust negative impacts of climate change on African agriculture. Environ. Res. Lett., 5, 014010, doi:10.1088/1748-9326/5/1/014010.

    • Search Google Scholar
    • Export Citation
  • Shin, D. W., G. A. Baigorria, Y-K. Lim, S. Cocke, T. E. LaRow, J. J. O’Brien, and J. W. Jones, 2010: Assessing maize and peanut yield simulations with various seasonal climate data in the southeastern United States. J. Appl. Meteor. Climatol.,49, 592–603, doi:10.1175/2009JAMC2293.1.

  • Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res.,115, D24211, doi:10.1029/2010JD014532.

  • Sultan, B., and S. Janicot, 2003: The West African monsoon dynamics. Part II: The “preonset” and “onset” of the summer monsoon. J. Climate, 16, 3407–3427, doi:10.1175/1520-0442(2003)016<3407:TWAMDP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., S. Solomon, A. Dai, and R. W. Portmann, 2006: How often does it rain? J. Climate, 19, 916934, doi:10.1175/JCLI3672.1.

  • Teo, C.-K., 2006: Application of satellite-based rainfall estimates to crop yield forecasting in Africa, Ph.D. dissertation, University of Reading, 242 pp.

  • Thornton, P. K., P. G. Jones, G. Alagarswamy, and J. Andresen, 2009: Spatial variation of crop yield response to climate change in East Africa. Global Environ. Change, 19, 5465, doi:10.1016/j.gloenvcha.2008.08.005.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. K., P. G. Jones, P. J. Ericksen, and A. J. Challinor, 2011: Agriculture and food systems in sub-Saharan Africa in a 4°C+ world. Philos. Trans. Roy. Soc.,369A, 117–136, doi:10.1098/rsta.2010.0246.

  • Vermeulen, S. J., and Coauthors, 2013: Addressing uncertainty in adaptation planning for agriculture. Proc. Natl. Acad. Sci. USA, 110, 83578362, doi:10.1073/pnas.1219441110.

    • Search Google Scholar
    • Export Citation
  • Wheeler, T. R., T. D. Hong, R. H. Ellis, G. R. Batts, J. I. L. Morison, and P. Hadley, 1996: The duration and rate of grain growth, and harvest index, of wheat (Triticum aestivum L.) in response to temperature and CO2. J. Exp. Bot., 47, 623630, doi:10.1093/jxb/47.5.623.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2820 2482 63
PDF Downloads 312 90 7