Inline Coupling of WRF–HYSPLIT: Model Development and Evaluation Using Tracer Experiments

Fong Ngan Air Resources Laboratory, National Oceanic and Atmospheric Administration, and Cooperative Institute for Climate and Satellites, University of Maryland, College Park, College Park, Maryland

Search for other papers by Fong Ngan in
Current site
Google Scholar
PubMed
Close
,
Ariel Stein Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, and ERT, Inc., Laurel, Maryland

Search for other papers by Ariel Stein in
Current site
Google Scholar
PubMed
Close
, and
Roland Draxler Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, Maryland

Search for other papers by Roland Draxler in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT), a Lagrangian dispersion model, has been coupled (inline) to the the Weather Research and Forecasting (WRF) Model meteorological model in such a way that the HYSPLIT calculation is run as part of the WRF-ARW prediction calculation. This inline version of HYSPLIT takes advantage of the higher temporal frequency of WRF-ARW variables relative to what would be available for the offline approach. Furthermore, the dispersion calculation uses the same vertical coordinate system as WRF-ARW, resulting in a more consistent depiction of the state of the atmosphere and the dispersion simulation. Both inline and the offline HYSPLIT simulations were conducted for two tracer experiments at quite different model spatial resolutions: the Cross Appalachian Tracer Experiment (CAPTEX) in regional scale (at 9-km grid spacing) and the Atmospheric Studies in Complex Terrain (ASCOT) in finescale (at 333.3-m grid spacing). A comparison of the model with the measured values showed that the results of the two approaches were very similar for all six releases in CAPTEX. For the ASCOT experiments, the cumulative statistical score of the inline simulations was better than or equal to offline runs in four of five releases. Although the use of the inline approach did not provide any advantage over the offline method for the regional spatial scale and medium-range temporal scale represented by the CAPTEX experiment, the inline HYSPLIT was able to improve the simulation of the dispersion when compared with the offline version for the fine spatial and temporal resolutions over the complex-terrain area represented by ASCOT. The improvement of the inline over the offline calculation is attributed to the elimination of temporal and vertical interpolation of the meteorological data as compared with the offline version.

Current affiliation: Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, Maryland.

Corresponding author address: Fong Ngan, NCWCP, Rm. 4208, 5830 University Research Ct., College Park, MD 20740. E-mail: fantine.ngan@noaa.gov

Abstract

The Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT), a Lagrangian dispersion model, has been coupled (inline) to the the Weather Research and Forecasting (WRF) Model meteorological model in such a way that the HYSPLIT calculation is run as part of the WRF-ARW prediction calculation. This inline version of HYSPLIT takes advantage of the higher temporal frequency of WRF-ARW variables relative to what would be available for the offline approach. Furthermore, the dispersion calculation uses the same vertical coordinate system as WRF-ARW, resulting in a more consistent depiction of the state of the atmosphere and the dispersion simulation. Both inline and the offline HYSPLIT simulations were conducted for two tracer experiments at quite different model spatial resolutions: the Cross Appalachian Tracer Experiment (CAPTEX) in regional scale (at 9-km grid spacing) and the Atmospheric Studies in Complex Terrain (ASCOT) in finescale (at 333.3-m grid spacing). A comparison of the model with the measured values showed that the results of the two approaches were very similar for all six releases in CAPTEX. For the ASCOT experiments, the cumulative statistical score of the inline simulations was better than or equal to offline runs in four of five releases. Although the use of the inline approach did not provide any advantage over the offline method for the regional spatial scale and medium-range temporal scale represented by the CAPTEX experiment, the inline HYSPLIT was able to improve the simulation of the dispersion when compared with the offline version for the fine spatial and temporal resolutions over the complex-terrain area represented by ASCOT. The improvement of the inline over the offline calculation is attributed to the elimination of temporal and vertical interpolation of the meteorological data as compared with the offline version.

Current affiliation: Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, Maryland.

Corresponding author address: Fong Ngan, NCWCP, Rm. 4208, 5830 University Research Ct., College Park, MD 20740. E-mail: fantine.ngan@noaa.gov
Save
  • Bowman, K. P., J. C. Lin, A. Stohl, R. Draxler, P. Konopka, A. Andrews, and D. Brunner, 2013: Input data requirements for Lagrangian trajectory models. Bull. Amer. Meteor. Soc., 94, 10511058, doi:10.1175/BAMS-D-12-00076.1.

    • Search Google Scholar
    • Export Citation
  • Brioude, J., W. M. Angevine, S. A. McKeen, and E. Y. Hsie, 2012: Numerical uncertainty at mesoscale in a Lagrangian model in complex terrain. Geosci. Model Dev. Discuss., 5, 967991, doi:10.5194/gmdd-5-967-2012.

    • Search Google Scholar
    • Export Citation
  • Brown, R. M., M. J. Leach, G. S. Raynor, and P. A. Michael, 1984: A summary and index of the weather documentation for the 1983 Cross-Appalachian Tracer Experiments. Informal Rep. BNL36879, Brookhaven National Laboratory, Upton, NY, 41 pp.

  • Bryan, G., 2014: Recommendations for WRF simulations with horizontal grid spacing between 100 m and 1 km. 15th WRF Users Workshop, Boulder, CO, NCAR, 4.1. [Available online at http://www2.mmm.ucar.edu/wrf/users/workshops/WS2014/ppts/4.1.pdf.]

  • Chen, B., A. F. Stein, N. Castell, J. D. de la Rosa, A. M. de la Campa, Y. Gonzalez-Castanedo, and R. R. Draxler, 2012: Modeling and surface observations of arsenic dispersion from a large Cu-smelter in southwestern Europe. Atmos. Environ., 49, 114122, doi:10.1016/j.atmosenv.2011.12.014.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling and advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deng, A., and Coauthors, 2009: Update on WRF-ARW end-to-end multi-scale FDDA system. 10th WRF Users Workshop, Boulder, CO, NCAR, 1.9. [Available online at http://www2.mmm.ucar.edu/wrf/users/workshops/WS2009/presentations/1-09.pdf.]

  • Draxler, R. R., 1987: One year of tracer dispersion measurements over Washington, D.C. Atmos. Environ., 21, 6977, doi:10.1016/0004-6981(87)90272-1.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., 2006: The use of global and mesoscale meteorological model data to predict the transport and dispersion of tracer plumes over Washington, D.C. Wea. Forecasting, 21, 383394, doi:10.1175/WAF926.1.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., and G. D. Hess, 1997: Description of the HYSPLIT_4 modeling system. NOAA Tech. Memo. ERL ARL-224, NOAA/Air Resources Laboratory, Silver Spring, MD, 24 pp. [Available online at http://www.arl.noaa.gov/documents/reports/arl-224.pdf.]

  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., and W. Wang, 2014: WRF advanced usage and best practices. 15th WRF Users Workshop, Boulder, CO, National Center for Atmospheric Research, 35 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/workshops/WS2014/ppts/best_prac_wrf.pdf.]

  • Ferber, G. J., J. L. Heffter, R. R. Draxler, R. J. Lagomarsino, F. L. Thomas, and R. N. Dietz, 1986: Cross-Appalachian Tracer Experiment (CAPTEX -83) final report. NOAA Tech. Memo. ERL ARL-142, NOAA/Air Resources Laboratory, Silver Spring, MD, 60 pp. [Available online at http://www.arl.noaa.gov/documents/reports/arl-142.pdf.]

  • Grell, G. A., and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, doi:10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 121 pp. [Available online at http://nldr.library.ucar.edu/repository/assets/technotes/TECH-NOTE-000-000-000-214.pdf.]

  • Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B. Eder, 2005: Fully coupled “online” chemistry within the WRF model. Atmos. Environ., 39, 69576975, doi:10.1016/j.atmosenv.2005.04.027.

    • Search Google Scholar
    • Export Citation
  • Gudiksen, P. H., G. J. Ferber, M. M. Fowler, W. L. Eberhard, M. A. Fosberg, and W. R. Knuth, 1984: Field studies of transport and dispersion of atmospheric tracers in nocturnal drainage flows. Atmos. Environ., 18, 713731, doi:10.1016/0004-6981(84)90257-9.

    • Search Google Scholar
    • Export Citation
  • Hegarty, J., and Coauthors, 2013: Validation of Lagrangian particle dispersion models with measurements from controlled tracer releases. J. Appl. Meteor. Climatol., 52, 26232637, doi:10.1175/JAMC-D-13-0125.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z. I., 2003: A nonhydrostatic model based on a new approach. Meteor. Atmos. Phys., 82, 271285, doi:10.1007/s00703-001-0587-6.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z. I., T. Black, M. Pyle, E. Rogers, H.-Y. Chuang, and G. DiMego, 2005: High resolution applications of the WRF NMM. Preprints, 21st Conf. on Weather Analysis and Forecasting/17th Conf. on Numerical Weather Prediction, Washington, DC, Amer. Meteor. Soc., 16A.4. [Available online at https://ams.confex.com/ams/pdfpapers/93724.pdf.]

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., 1989: Description of the NMC Global Data Assimilation and Forecast System. Wea. Forecasting, 4, 335342, doi:10.1175/1520-0434(1989)004<0335:DOTNGD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lei, L., D. R. Stauffer, and A. Deng, 2012: A hybrid nudging-ensemble Kalman filter approach to data assimilation in WRF/DART. Quart. J. Roy. Meteor. Soc., 138, 20662078, doi:10.1002/qj.1939.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343340, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RTTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Ngan, F., A. F. Stein, and R. R. Draxler, 2013: Inline coupling of WRF-HYSPLIT: Development and results for CAPTEX-83. Traversing New Terrain in Meteorological Modeling, Air Quality and Disperison, Davis, CA, Air Quality Research Center, University of California, Davis. [Available online at http://aqrc.ucdavis.edu/event/conference-traversing-new-terrain-in-meteorological-modeling-air-quality-and-dispersion/.]

  • Orgill, M. M., and R. I. Schreck, 1985: An overview of the ASCOT multi-laboratory field experiments in relation to drainage winds and ambient flow. Bull. Amer. Meteor. Soc., 66, 12631277, doi:10.1175/1520-0477(1985)066<1263:AOOTAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peltier, L. J., S. E. Haupt, J. C. Wyngaard, D. R. Stauffer, A. Deng, J. A. Lee, K. J. Long, and A. J. Annunzio, 2010: Parameterizing mesoscale wind uncertainty for dispersion modeling. J. Appl. Meteor. Climatol., 49, 16041614, doi:10.1175/2010JAMC2396.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF verson 3. NCAR Tech Note NCAR/TN-475+STR, 125 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Srinivas, C. V., R. Venkatesan, R. Baskaran, V. Rajagopal, and B. Venkatraman, 2012: Regional scale atmospheric dispersion simulation of accidental releases of radionuclides from Fukushima Dai-ichi reactor. Atmos. Environ., 61, 6684, doi:10.1016/j.atmosenv.2012.06.082.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., M. Hittenberger, and G. Wotawa, 1998: Validation of the Lagrangian particle dispersion model FLEXPART against large-scale tracer experiment data. Atmos. Environ., 32, 42454264, doi:10.1016/S1352-2310(98)00184-8.

    • Search Google Scholar
    • Export Citation
  • Wong, D. C., and Coauthors, 2012: WRF-CMAQ two-way coupled system with aerosol feedback: Software development and preliminary results. Geosci. Model Dev., 5, 299312, doi:10.5194/gmd-5-299-2012.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., 2008: Online-coupled meteorology and chemistry models: History, current status, and outlook. Atmos. Chem. Phys., 8, 28952932, doi:10.5194/acp-8-2895-2008.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3274 1391 44
PDF Downloads 1474 305 21