Automated Quality Control of In Situ Soil Moisture from the North American Soil Moisture Database Using NLDAS-2 Products

Youlong Xia National Centers for Environmental Prediction/Environmental Modeling Center, and I. M. Systems Group, College Park, Maryland

Search for other papers by Youlong Xia in
Current site
Google Scholar
PubMed
Close
,
Trent W. Ford Department of Geography, Texas A&M University, College Station, Texas

Search for other papers by Trent W. Ford in
Current site
Google Scholar
PubMed
Close
,
Yihua Wu National Centers for Environmental Prediction/Environmental Modeling Center, and I. M. Systems Group, College Park, Maryland

Search for other papers by Yihua Wu in
Current site
Google Scholar
PubMed
Close
,
Steven M. Quiring Department of Geography, Texas A&M University, College Station, Texas

Search for other papers by Steven M. Quiring in
Current site
Google Scholar
PubMed
Close
, and
Michael B. Ek National Centers for Environmental Prediction/Environmental Modeling Center, College Park, Maryland

Search for other papers by Michael B. Ek in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The North American Soil Moisture Database (NASMD) was initiated in 2011 to provide support for developing climate forecasting tools, calibrating land surface models, and validating satellite-derived soil moisture algorithms. The NASMD has collected data from over 30 soil moisture observation networks providing millions of in situ soil moisture observations in all 50 states, as well as Canada and Mexico. It is recognized that the quality of measured soil moisture in NASMD is highly variable because of the diversity of climatological conditions, land cover, soil texture, and topographies of the stations, and differences in measurement devices (e.g., sensors) and installation. It is also recognized that error, inaccuracy, and imprecision in the data can have significant impacts on practical operations and scientific studies. Therefore, developing an appropriate quality control procedure is essential to ensure that the data are of the best quality. In this study, an automated quality control approach is developed using the North American Land Data Assimilation System, phase 2 (NLDAS-2), Noah soil porosity, soil temperature, and fraction of liquid and total soil moisture to flag erroneous and/or spurious measurements. Overall results show that this approach is able to flag unreasonable values when the soil is partially frozen. A validation example using NLDAS-2 multiple model soil moisture products at the 20-cm soil layer showed that the quality control procedure had a significant positive impact in Alabama, North Carolina, and west Texas. It had a greater impact in colder regions, particularly during spring and autumn. Over 433 NASMD stations have been quality controlled using the methodology proposed in this study, and the algorithm will be implemented to control data quality from the other ~1200 NASMD stations in the near future.

Corresponding author address: Youlong Xia, IMSG at NCEP/EMC, NOAA Center for Weather and Climate Prediction (NCWCP), 5830 University Research Court, College Park, MD 20740. E-mail: youlong.xia@noaa.gov

Abstract

The North American Soil Moisture Database (NASMD) was initiated in 2011 to provide support for developing climate forecasting tools, calibrating land surface models, and validating satellite-derived soil moisture algorithms. The NASMD has collected data from over 30 soil moisture observation networks providing millions of in situ soil moisture observations in all 50 states, as well as Canada and Mexico. It is recognized that the quality of measured soil moisture in NASMD is highly variable because of the diversity of climatological conditions, land cover, soil texture, and topographies of the stations, and differences in measurement devices (e.g., sensors) and installation. It is also recognized that error, inaccuracy, and imprecision in the data can have significant impacts on practical operations and scientific studies. Therefore, developing an appropriate quality control procedure is essential to ensure that the data are of the best quality. In this study, an automated quality control approach is developed using the North American Land Data Assimilation System, phase 2 (NLDAS-2), Noah soil porosity, soil temperature, and fraction of liquid and total soil moisture to flag erroneous and/or spurious measurements. Overall results show that this approach is able to flag unreasonable values when the soil is partially frozen. A validation example using NLDAS-2 multiple model soil moisture products at the 20-cm soil layer showed that the quality control procedure had a significant positive impact in Alabama, North Carolina, and west Texas. It had a greater impact in colder regions, particularly during spring and autumn. Over 433 NASMD stations have been quality controlled using the methodology proposed in this study, and the algorithm will be implemented to control data quality from the other ~1200 NASMD stations in the near future.

Corresponding author address: Youlong Xia, IMSG at NCEP/EMC, NOAA Center for Weather and Climate Prediction (NCWCP), 5830 University Research Court, College Park, MD 20740. E-mail: youlong.xia@noaa.gov
Save
  • Bartalis, Z., W. Wagner, V. Naeimi, S. Hasenauer, K. Scipal, H. Bonekamp, J. Figa, and C. Anderson, 2007: Initial soil moisture retrievals from the METOP-A Advanced Scatterometer (ASCAT). Geophys. Res. Lett., 34, L20401, doi:10.1029/2007GL031088.

    • Search Google Scholar
    • Export Citation
  • Brocca, L., F. Melone, T. Moramarco, and R. Morbidelli, 2010: Spatial-temporal variability of soil moisture and its estimation across scales. Water Resour. Res., 46, W02516, doi:10.1029/2009WR008016.

    • Search Google Scholar
    • Export Citation
  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 2031–2064, doi:10.1002/joc.1688.

    • Search Google Scholar
    • Export Citation
  • de Goncalves, L. G. G., W. J. Shuttleworth, S. C. Chou, Y. Xue, P. R. Houser, D. L. Toll, J. Marengo, and M. Rodell, 2006: Impact of different initial soil moisture fields on Eta Model weather forecasts for South America. J. Geophys. Res., 111, D17102, doi:10.1029/2005JD006309.

    • Search Google Scholar
    • Export Citation
  • De Rosnay, P., C. Gruhier, F. Timouk, F. Baup, E. Mougin, P. Hiernaux, L. Kergoat, and V. LeDntec, 2009: Multi-scale soil moisture measurements at the Gourma meso-scale site in Mali. J. Hydrol., 375, 241–252, doi:10.1016/j.jhydrol.2009.01.015.

    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., and Coauthors, 2011: The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci., 15, 1675–1698, doi:10.5194/hess-15-1675-2011.

    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., and Coauthors, 2013: Global automated quality control of in situ soil moisture data from the International Soil Moisture Network. Vadose Zone J., 12, doi:10.2136/vzj2012.0097.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2010: The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE, 98, 704–716, doi:10.1109/JPROC.2010.2043918.

    • Search Google Scholar
    • Export Citation
  • Entin, J. K., A. Robock, K. Y. Vinnikov, S. E. Hollinger, S. Liu, and A. Namkhai, 2000: Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res., 105, 11 865–11 877, doi:10.1029/2000JD900051.

    • Search Google Scholar
    • Export Citation
  • Famiglietti, J. S., D. Ryu, A. A. Berg, M. Rodell, and T. J. Jackson, 2008: Field observations of soil moisture variability across scales. Water Resour. Res., 44, W01423, doi:10.1029/2008WR007323.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., H. M. Van den Dool, D. Lohmann, and K. Mitchell, 2006: 1948–1998 U.S. hydrological reanalysis by the Noah land data assimilation system. J. Climate, 19, 1214–1237, doi:10.1175/JCLI3681.1.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., H. M. Van den Dool, and W. Wu, 2011: Verification and intercomparison of multimodel simulated land surface hydrological datasets over the United States. J. Hydrometeor., 12, 531–555, doi:10.1175/2011JHM1317.1.

    • Search Google Scholar
    • Export Citation
  • Ford, T. W., and S. M. Quiring, 2013a: Comparison and application of multiple methods for temporal interpolation of daily soil moisture. Int. J. Climatol., 34, 2604–2621, doi:10.1002/joc.3862.

    • Search Google Scholar
    • Export Citation
  • Ford, T. W., and S. M. Quiring, 2013b: Influence of MODIS-derived dynamic vegetation on VIC-simulated soil moisture in Oklahoma. J. Hydrometeor., 14, 1910–1921, doi:10.1175/JHM-D-13-037.1.

    • Search Google Scholar
    • Export Citation
  • Ford, T. W., E. Harris, and S. M. Quiring, 2014: Estimating root zone soil moisture using near-surface observations from SMOS. Hydrol. Earth Syst. Sci., 18, 139–154, doi:10.5194/hess-18-139-2014.

    • Search Google Scholar
    • Export Citation
  • Gruhier, C., and Coauthors, 2010: Soil moisture active and passive microwave products: Intercomparison and evaluation over a Sahelian site. Hydrol. Earth Syst. Sci., 14, 141–156, doi:10.5194/hess-14-141-2010.

    • Search Google Scholar
    • Export Citation
  • Hallikainen, M. T., F. T. Ulaby, M. C. Dobson, M. A. El-Rayes, and L.-K. Wu, 1985: Microwave dielectric behavior of wet soil—Part I: Empirical models and experimental observations. IEEE Trans. Geosci. Remote Sens., 23, 25–34, doi:10.1109/TGRS.1985.289497.

    • Search Google Scholar
    • Export Citation
  • Hubbard, K. G., S. Goddard, W. D. Sorensen, N. Wells, and T. T. Osugi, 2005: Performance of quality assurance procedures for an applied climate information system. J. Atmos. Oceanic Technol., 22, 105–112, doi:10.1175/JTECH-1657.1.

    • Search Google Scholar
    • Export Citation
  • Illston, B. G., J. B. Basara, D. K. Fisher, R. Elliott, C. A. Fiebrich, K. C. Crawford, K. Humes, and E. Hunt, 2008: Mesoscale monitoring of soil moisture across a statewide network. J. Atmos. Oceanic Technol., 25, 167–182, doi:10.1175/2007JTECHA993.1.

    • Search Google Scholar
    • Export Citation
  • Ingleby, B., and M. Huddleston, 2007: Quality control of ocean temperature and salinity profiles—Historical and real-time data. J. Mar. Syst., 65, 158–175, doi:10.1016/j.jmarsys.2005.11.019.

    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., and Coauthors, 2010: Validation of Advanced Microwave Scanning Radiometer soil moisture products. IEEE Trans. Geosci. Remote Sens., 48, 4256–4272, doi:10.1109/TGRS.2010.2051035.

    • Search Google Scholar
    • Export Citation
  • Journée, M., and C. Bertrand, 2011: Quality control of solar radiation data within the RMIB solar measurements network. Sol. Energy, 85, 72–86, doi:10.1016/j.solener.2010.10.021.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., and Coauthors, 2011: The contributions of precipitation and soil moisture observations to the skill of soil moisture estimates in a land data assimilation system. J. Hydrometeor., 12, 750–765, doi:10.1175/JHM-D-10-05000.1.

    • Search Google Scholar
    • Export Citation
  • Mecklenburg, S., and Coauthors, 2012: ESA’s soil moisture and ocean salinity mission: Mission performance and operations. IEEE Trans. Geosci. Remote Sens., 50, 1354–1366, doi:10.1109/TGRS.2012.2187666.

    • Search Google Scholar
    • Export Citation
  • Meng, J., R. Yang, H. Wei, M. Ek, G. Gayno, P. Xie, and K. E. Mitchell, 2012: The land surface analysis in the NCEP Climate Forecast System Reanalysis. J. Hydrometeor., 13, 1621–1630, doi:10.1175/JHM-D-11-090.1.

    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., P. Le Borgne, A. Marsouin, and H. Roquet, 2008: Optimal estimation of sea surface temperature from split-window observations. Remote Sens. Environ., 112, 2469–2484, doi:10.1016/j.rse.2007.11.011.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343–360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res.,109, D07S90, doi:10.1029/2003JD003823.

  • Owe, M., R. de Jeu, and T. Holmes, 2008: Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res., 113, F01002, doi:10.1029/2007JF000769.

    • Search Google Scholar
    • Export Citation
  • NRCS, 2013: Soil Survey Geographic (SSURGO) Database. U.S. Department of Agriculture Natural Resources Conservation Service, accessed 15 January 2013. [Available online at http://sdmdataaccess.nrcs.usda.gov/.]

  • Parrens, M., E. Zakharova, S. Lafont, J. C. Calvet, Y. Kerr, W. Wagner, and J. P. Wigneron, 2012: Comparing soil moisture retrievals from SMOS and ASCAT over France. Hydrol. Earth Syst. Sci., 16, 423–440, doi:10.5194/hess-16-423-2012.

    • Search Google Scholar
    • Export Citation
  • Robock, A., and Coauthors, 2003: Evaluation of the North American Land Data Assimilation System over the southern Great Plains during the warm season. J. Geophys. Res., 108, 8846, doi:10.1029/2002JD003245.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381–394, doi:10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Shaw, R. H., R. E. Felch, and E. R. Duncan, 1972: Soil moisture available for plant growth in Iowa. Iowa Agriculture and Home Economics Experiment Station Special Rep. 70, 30 pp.

  • Su, Z., P. de Rosnay, J. Wen, L. Wang, and Y. Zeng, 2013: Evaluation of ECMWF’s soil moisture analyses using observations on the Tibetan Plateau. J. Geophys. Res. Atmos., 118, 5304–5318, doi:10.1002/jgrd.50468.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 7183–7192, doi:10.1029/2000JD900719.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012a: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, doi:10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012b: Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow. J. Geophys. Res., 117, D03110, doi:10.1029/2011JD016051.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2013: Validation of Noah-simulated soil temperature in the North American Land Data Assimilation System phase 2. J. Appl. Meteor. Climatol., 52, 455–471, doi:10.1175/JAMC-D-12-033.1.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., J. Sheffield, M. B. Ek, J. Dong, N. Chaney, H. Wei, J. Meng, and E. F. Wood, 2014: Evaluation of multi-model simulated soil moisture in NLDAS-2. J. Hydrol., 512, 107–125, doi:10.1016/j.jhydrol.2014.02.027.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., M. B. Ek, Y. Wu, T. W. Ford, and S. M. Quiring, 2015a: Comparison of NLDAS-2 simulated and NASMD observed daily soil moisture. Part I: Comparison and analysis. J. Hydrometeor., doi:10.1175/JHM-D-14-0096.1, in press.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., M. B. Ek, Y. Wu, T. W. Ford, and S. M. Quiring, 2015b: Comparison of NLDAS-2 simulated and NASMD observed daily soil moisture. Part II: Impact of soil texture classification and vegetation type mismatches. J. Hydrometeor., doi:10.1175/JHM-D-14-0097.1, in press.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., C. D. Peters-Lidard, M. Huang, H. Wei, and M. Ek, 2015c: Improved NLDAS-2 Noah-simulated hydrometeorological products with an interim run. Hydrol. Processes,29, 780–792, doi:10.1002/hyp.10190.

  • You, J., K. G. Hubbard, R. Mahmood, V. Sridhar, and D. Todey, 2010: Quality control of soil water data in applied climate information system-case study in Nebraska. J. Hydrol. Eng., 15, 200–209, doi:10.1061/(ASCE)HE.1943-5584.0000174.

    • Search Google Scholar
    • Export Citation
  • Zhan, W., J. Liu, L. Zhao, and K. Jensen, 2011: Soil Moisture Operational Product System (SMOPS). Algorithm Theoretical Basis Doc. version 2.2, NOAA NESDIS STAR, 60 pp. [Available online at http://www.ospo.noaa.gov/Products/land/smops/figures/SMOPS_ATBD_v3.0.pdf.]

  • Zribi, M., C. Andrìe, and B. Decharme, 2008: A method for soil moisture estimation in western Africa based on ERS scatterometer. IEEE Trans. Geosci. Remote, 46, 438–448, doi:10.1109/TGRS.2007.904582.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2323 1108 16
PDF Downloads 594 125 11